321 research outputs found
Calculation of Densities of States and Spectral Functions by Chebyshev Recursion and Maximum Entropy
We present an efficient algorithm for calculating spectral properties of
large sparse Hamiltonian matrices such as densities of states and spectral
functions. The combination of Chebyshev recursion and maximum entropy achieves
high energy resolution without significant roundoff error, machine precision or
numerical instability limitations. If controlled statistical or systematic
errors are acceptable, cpu and memory requirements scale linearly in the number
of states. The inference of spectral properties from moments is much better
conditioned for Chebyshev moments than for power moments. We adapt concepts
from the kernel polynomial approximation, a linear Chebyshev approximation with
optimized Gibbs damping, to control the accuracy of Fourier integrals of
positive non-analytic functions. We compare the performance of kernel
polynomial and maximum entropy algorithms for an electronic structure example.Comment: 8 pages RevTex, 3 postscript figure
Effect of the anisotropy on the glory structure of molecule-molecule scattering cross sections
Total (elastic + rotationally inelastic) integral cross sections are computed
for O-O using a recent ab initio potential
energy surface. The sampled velocity range allows us a thorough comparison of
the glory interference pattern observed in molecular beam experiments. The
computed cross sections are about 10% smaller than the measured ones, however,
a remarkable agreement in the velocity positions of the glory extrema is
achieved. By comparing with models where the anisotropy of the interaction is
reduced or removed, it is found that the glory pattern is very sensitive to the
anisotropy, especially the positions of the glory extrema.Comment: 13 pages, 3 figure
Pseudo-time Schroedinger equation with absorbing potential for quantum scattering calculations
The Schroedinger equation with an energy-dependent complex absorbing
potential, associated with a scattering system, can be reduced for a special
choice of the energy-dependence to a harmonic inversion problem of a discrete
pseudo-time correlation function. An efficient formula for Green's function
matrix elements is also derived. Since the exact propagation up to time 2t can
be done with only t real matrix-vector products, this gives an unprecedently
efficient scheme for accurate calculations of quantum spectra for possibly very
large systems.Comment: 9 page
Manejo e cultivo de açaizais para produção de frutos.
Os açaizais, áreas de florestas de varzea dominadas pela palmeira Euterpe oleracea, são um recurso florestal não-madeireiro da região do Estuario Amazônico
Phonon-assisted radiofrequency absorption by gold nanoparticles resulting in hyperthermia
It is suggested that in gold nanoparticles (GNPs) of about 5 nm sizes used in
the radiofrequency (RF) hyperthermia, an absorption of the RF photon by the
Fermi electron occurs with involvement of the longitudinal acoustic vibrational
mode (LAVM), the dominating one in the distribution of vibrational density of
states (VDOS). This physical mechanism helps to explain two observed phenomena:
the size dependence of the heating rate (HR) in GNPs and reduced heat
production in aggregated GNPs. The argumentation proceeds within the
one-electron approximation, taking into account the discretenesses of energies
and momenta of both electrons and LAVMs. The heating of GNPs is thought to
consist of two consecutive processes: first, the Fermi electron absorbs
simultaneously the RF photon and the LAVM available in the GNP; hereafter the
excited electron gets relaxed within the GNP's boundary, exciting a LAVM with
the energy higher than that of the previously absorbed LAVM. GNPs containing
the Ta and/or Fe impurities are proposed for the RF hyperthermia as promising
heaters with enhanced HRs, and GNPs with rare-earth impurity atoms are also
brought into consideration. It is shown why the maximum HR values should be
expected in GNPs with about 5-7 nm size.Comment: proceedings at the NATO Advanced Research workshop FANEM-2015 (Minsk,
May 25-27, 2015). To be published in the final form in: "Fundamental and
Applied NanoElectroMagnetics" (Springer Science + Business Media B.V.
WIDER Advisory Group on International Economic Issues
(A research and training centre of the United Nations University
Sistemas de produção familiar para convivência com o semi-árido brasileiro: uma experiência de P&D da Embrapa Algodão.
bitstream/CNPA-2009-09/22278/1/DOC214.pd
- …