425 research outputs found
On the influence of the magnetic field of the GSI experimental storage ring on the time-modulation of the EC-decay rates of the H-like mother ions
We investigate the influence of the magnetic field of the
Experimental storage ring (ESR) at GSI on the periodic time-dependence of the
orbital K-shell electron capture decay ) rates of the H--like heavy ions.
We approximate the magnetic field of the ESR by a uniform magnetic field.
Unlike the assertion by Lambiase et al., arXiv: 0811.2302 [nucl-th], we show
that a motion of the H-like heavy ion in a uniform magnetic field cannot be the
origin of the periodic time-dependence of the EC-decay rates of the H-like
heavy ions.Comment: 3 pages, 1 figur
Lyapunov-based online parameter estimation in continuous fluidized bed spray agglomeration processes
First Energy and Angle differential Measurements of e^+e^- -pairs emitted by Internal Pair Conversion of excited Heavy Nuclei
We present the first energy and angle resolved measurements of e+e- pairs
emitted from heavy nuclei (Z>=40) at rest by internal pair conversion (IPC) of
transitions with energies of less than 2MeV as well as recent theoretical
results using the DWBA method, which takes full account of relativistic
effects, magnetic substates and finite size of the nucleus. The 1.76MeV E0
transition in Zr90 (Sr source) and the 1.77MeV M1 transition in Pb207 (Bi
source) have been investigated experimentally using the essentially improved
set-up at the double-ORANGE beta-spectrometer of GSI. The measurements prove
the capability of the setup to cleanly identify the IPC pairs in the presence
of five orders of magnitude higher beta- and gamma background from the same
source and to yield essentially background-free sum spectra despite the large
background. Using the ability of the ORANGE setup to directly determine the
opening angle of the e+e- pairs, the angular correlation of the emitted pairs
was measured. In the Zr90 case the correlation could be deduced for a wide
range of energy differences of the pairs. The Zr90 results are in good
agreement with recent theory. The angular correlation deduced for the M1
transition in Pb207 is in strong disagreement with theoretical predictions
derived within the Born approximation and shows almost isotropic character.
This is again in agreement with the new theoretical results.Comment: LaTeX, 28 pages incl. 10 PS figures; Accepted by Z.Phys.
New Way to Produce Dense Double-Antikaonic Dibaryon System, \bar{K}\bar{K} NN, through Lambda(1405)-Doorway Sticking in p+p Collisions
A recent successful observation of a dense and deeply bound \bar{K} nuclear
system, K^-pp, in the p + p \rightarrow K^+ + K^-pp reaction in a DISTO
experiment indicates that the double-\bar{K} dibaryon, K^-K^-pp, which was
predicted to be a dense nuclear system, can also be formed in p+p collisions.
We find theoretically that the K^- -K^- repulsion plays no significant role in
reducing the density and binding energy of K^-K^-pp and that, when two
\Lambda(1405) resonances are produced simultaneously in a short-range p+p
collision, they act as doorways to copious formation of K^-K^-pp, if and only
if K^-K^-pp is a dense object, as predicted.Comment: 8 pages, 9 figures, Accepted Apr. 19, 201
Extended Huckel theory for bandstructure, chemistry, and transport. II. Silicon
In this second paper, we develop transferable semi-empirical parameters for
the technologically important material, silicon, using Extended Huckel Theory
(EHT) to calculate its electronic structure. The EHT-parameters areoptimized to
experimental target values of the band dispersion of bulk-silicon. We obtain a
very good quantitative match to the bandstructure characteristics such as
bandedges and effective masses, which are competitive with the values obtained
within an orthogonal-tight binding model for silicon. The
transferability of the parameters is investigated applying them to different
physical and chemical environments by calculating the bandstructure of two
reconstructed surfaces with different orientations: Si(100) (2x1) and Si(111)
(2x1). The reproduced - and -surface bands agree in part
quantitatively with DFT-GW calculations and PES/IPES experiments demonstrating
their robustness to environmental changes. We further apply the silicon
parameters to describe the 1D band dispersion of a unrelaxed rectangular
silicon nanowire (SiNW) and demonstrate the EHT-approach of surface passivation
using hydrogen. Our EHT-parameters thus provide a quantitative model of
bulk-silicon and silicon-based materials such as contacts and surfaces, which
are essential ingredients towards a quantitative quantum transport simulation
through silicon-based heterostructures.Comment: 9 pages, 9 figure
Positron spectra from internal pair conversion observed in {238}U + {181}Ta collisions
We present new results from measurements and simulations of positron spectra,
originating from 238U + 181Ta collisions at beam energies close to the Coulomb
barrier. The measurements were performed using an improved experimental setup
at the double-Orange spectrometer of GSI. Particular emphasis is put on the
signature of positrons from Internal-Pair-Conversion (IPC) processes in the
measured e+ energy spectra, following the de-excitation of electromagnetic
transitions in the moving Ta-like nucleus. It is shown by Monte Carlo
simulations that, for the chosen current sweeping procedure used in the present
experiments, positron emission from discrete IPC transitions can lead to rather
narrow line structures in the measured energy spectra. The measured positron
spectra do not show evidence for line structures within the statistical
accuracy achieved, although expected from the intensities of the observed
transitions (E keV) and theoretical conversion
coefficients. This is due to the reduced detection efficiency for IPC
positrons, caused by the limited spatial and momentum acceptance of the
spectrometer. A comparison with previous results, in which lines have been
observed, is presented and the implications are discussed.Comment: LaTeX, 20 pages including 5 EPS figures; Accepted by Eur. Phys.Jour.
New Results on e+e- Line Emission in U+Ta Collisions
We present new results obtained from a series of follow-up e+e- coincidence
measurements in heavy-ion collisions, utilizing an improved experimental set-up
at the double-Orange beta-spectrometer of GSI. The collision system U+Ta was
reinvestigated in three independent runs at beam energies in the range
(6.0-6.4)xA MeV and different target thicknesses, with the objective to
reproduce a narrow sum-energy e+e- line at ~635 keV observed previously in this
collision system. At improved statistical accuracy, the line could not be found
in these new data. For the ''fission'' scenario, an upper limit (1 sigma) on
its production probability per collision of 1.3x10^{-8} can be set which has to
be compared to the previously reported value of [4.9 +- 0.8 (stat.) +- 1.0
(syst)]x10^{-7}. In the light of the new results, a reanalysis of the old data
shows that the continuous part of the spectrum at the line position is
significantly higher than previously assumed, thus reducing the production
probability of the line by a factor of two and its statistical significance to
< 3.4sigma.Comment: 15 pages, standard LaTeX with 3 included PS figures; Submitted to
Physics Letters
- …