481 research outputs found

    Negative index fishnet with nanopillars formed by direct nano-imprint lithography

    Get PDF
    In this paper we demonstrate the ability to fabricate fishnets by nanoimprinting directly into a pre-deposited three layer metal–dielectric–metal stack, enabling us to pattern large areas in two minutes. We have designed and fabricated two different fishnet structures of varying dimensions using this method and measured their resonant wavelengths in the near-infrared at 1.45 μm and 1.88 μm. An important by-product of directly imprinting into the metal–dielectric stack, without separation from the substrate, is the formation of rectangular nanopillars that sit within the rectangular apertures between the fishnet slabs. Simulations complement our measurements and suggest a negative refractive index real part with a magnitude of 1.6. Further simulations suggest that if the fishnet were to be detached from the supporting substrate a refractive index real part of 5 and FOM of 2.74 could be obtained

    Nucleus Accumbens Deep Brain Stimulation in a Rat Model of Binge Eating

    Get PDF
    Binge eating (BE) is a difficult-to-treat behavior with high relapse rates, thus complicating several disorders including obesity. In this study, we tested the effects of high-frequency deep brain stimulation (DBS) in a rodent model of BE. We hypothesized that BE rats receiving high-frequency DBS in the nucleus accumbens (NAc) core would have reduced binge sizes compared with sham stimulation in both a \u27chronic BE\u27 model as well as in a \u27relapse to chronic BE\u27 model. Male Sprague-Dawley rats (N=18) were implanted with stimulating electrodes in bilateral NAc core, and they received either active stimulation (N=12) or sham stimulation (N=6) for the initial chronic BE experiments. After testing in the chronic BE state, rats did not engage in binge sessions for 1 month, and then resumed binge sessions (relapse to chronic BE) with active or sham stimulation (N=5-7 per group). A significant effect of intervention group was observed on binge size in the chronic BE state, but no significant difference between intervention groups was observed in the relapse to chronic BE experiments. This research, making use of both a chronic BE model as well as a relapse to chronic BE model, provides data supporting the hypothesis that DBS of the NAc core can decrease BE. Further research will be needed to learn how to increase the effect size and decrease deep brain stimulation-treatment outcome variability across the continuum of BE behavior

    Alternative splicing and protein diversity: plants versus animals

    Get PDF
    Plants, unlike animals, exhibit a very high degree of plasticity in their growth and development and employ diverse strategies to cope with the variations during diurnal cycles and stressful conditions. Plants and animals, despite their remarkable morphological and physiological differences, share many basic cellular processes and regulatory mechanisms. Alternative splicing (AS) is one such gene regulatory mechanism that modulates gene expression in multiple ways. It is now well established that AS is prevalent in all multicellular eukaryotes including plants and humans. Emerging evidence indicates that in plants, as in animals, transcription and splicing are coupled. Here, we reviewed recent evidence in support of co-transcriptional splicing in plants and highlighted similarities and differences between plants and humans. An unsettled question in the field of AS is the extent to which splice isoforms contribute to protein diversity. To take a critical look at this question, we presented a comprehensive summary of the current status of research in this area in both plants and humans, discussed limitations with the currently used approaches and suggested improvements to current methods and alternative approaches. We end with a discussion on the potential role of epigenetic modifications and chromatin state in splicing memory in plants primed with stresses

    Glutamine and GABA alterations in cingulate cortex may underlie alcohol drinking in a rat model of co-occurring alcohol use disorder and schizophrenia: an 1H-MRS study

    Get PDF
    Alcohol use disorder commonly occurs in patients with schizophrenia and significantly worsens the clinical course of the disorder. The neurobiological underpinnings of alcohol drinking are not well understood. Magnetic resonance spectroscopy (MRS) has been used to assess the neurochemical substrates that may be associated with alcohol drinking in patients; however, the causal impact of these findings remains elusive, highlighting the need for studies in animal models. This study performed MRS in the neonatal ventral hippocampal lesioned (NVHL) rat model, a model of co-occurring schizophrenia and substance use disorders. NVHL lesions (or sham surgeries) were performed on post-natal day 7 and animals were given brief exposure to alcohol during adolescence (10% v/v in a 2-bottle choice design). Animals were re-exposed to alcohol during adulthood (20% v/v) until a stable drinking baseline was established, and then forced into abstinence to control for the effects of differential alcohol drinking. Animals were scanned for MRS after one month of abstinence. NVHL rats consumed significantly more alcohol than sham rats and in the cingulate cortex showed significantly higher levels of GABA and glutamine. Significantly lower GABA levels were observed in the nucleus accumbens. No differences between the NVHL and sham animals were observed in the hippocampus. Correlation analysis revealed that GABA and glutamine concentrations in the cingulate cortex significantly correlated with the rats’ alcohol drinking prior to 30 days of forced abstinence. These findings suggest that a potential dysfunction in the glutamate/GABA–glutamine cycle may contribute to alcohol drinking in a rat model of schizophrenia, and this dysfunction could be targeted in future treatment-focused studies

    Does co-transcriptional regulation of alternative splicing mediate plant stress responses?

    Get PDF
    Plants display exquisite control over gene expression to elicit appropriate responses under normal and stress conditions. Alternative splicing (AS) of pre-mRNAs, a process that generates two or more transcripts from multi-exon genes, adds another layer of regulation to fine-tune condition-specific gene expression in animals and plants. However, exactly how plants control splice isoform ratios and the timing of this regulation in response to environmental signals remains elusive. In mammals, recent evidence indicate that epigenetic and epitranscriptome changes, such as DNA methylation, chromatin modifications and RNA methylation, regulate RNA polymerase II processivity, co-transcriptional splicing, and stability and translation efficiency of splice isoforms. In plants, the role of epigenetic modifications in regulating transcription rate and mRNA abundance under stress is beginning to emerge. However, the mechanisms by which epigenetic and epitranscriptomic modifications regulate AS and translation efficiency require further research. Dynamic changes in the chromatin landscape in response to stress may provide a scaffold around which gene expression, AS and translation are orchestrated. Finally, we discuss CRISPR/Cas-based strategies for engineering chromatin architecture to manipulate AS patterns (or splice isoforms levels) to obtain insight into the epigenetic regulation of AS

    Machine Learning Based Classification of Deep Brain Stimulation Outcomes in a Rat Model of Binge Eating Using Ventral Striatal Oscillations

    Get PDF
    Neuromodulation-based interventions continue to be evaluated across an array of appetitive disorders but broader implementation of these approaches remains limited due to variable treatment outcomes. We hypothesize that individual variation in treatment outcomes may be linked to differences in the networks underlying these disorders. Here, Sprague-Dawley rats received deep brain stimulation separately within each nucleus accumbens (NAc) sub-region (core and shell) using a within-animal crossover design in a rat model of binge eating. Significant reductions in binge size were observed with stimulation of either target but with significant variation in effectiveness across individuals. When features of local field potentials (LFPs) recorded from the NAc were used to classify the pre-defined stimulation outcomes (response or non-response) from each rat using a machine-learning approach (lasso), stimulation outcomes could be classified with greater accuracy than expected by chance (effect sizes: core = 1.13, shell = 1.05). Further, these LFP features could be used to identify the best stimulation target for each animal (core vs. shell) with an effect size = 0.96. These data suggest that individual differences in underlying network activity may relate to the variable outcomes of circuit based interventions, and measures of network activity could have the potential to individually guide the selection of an optimal stimulation target to improve overall treatment response rates

    Machine Learning Based Classification of Deep Brain Stimulation Outcomes in a Rat Model of Binge Eating Using Ventral Striatal Oscillations

    Get PDF
    Neuromodulation-based interventions continue to be evaluated across an array of appetitive disorders but broader implementation of these approaches remains limited due to variable treatment outcomes. We hypothesize that individual variation in treatment outcomes may be linked to differences in the networks underlying these disorders. Here, Sprague-Dawley rats received deep brain stimulation separately within each nucleus accumbens (NAc) sub-region (core and shell) using a within-animal crossover design in a rat model of binge eating. Significant reductions in binge size were observed with stimulation of either target but with significant variation in effectiveness across individuals. When features of local field potentials (LFPs) recorded from the NAc were used as predictors of the pre-defined stimulation outcomes (response or non-response) from each rat using a machine-learning approach (lasso), stimulation outcomes could be predicted with greater accuracy than expected by chance (effect sizes: core = 1.13, shell = 1.05). Further, these LFP features could be used to identify the best stimulation target for each animal (core vs. shell) with an effect size = 0.96. These data suggest that individual differences in underlying network activity may contribute to the variable outcomes of circuit based interventions and that measures of network activity have the potential to individually guide the selection of an optimal stimulation target and improve overall treatment response rates

    A review of size and geometrical factors influencing resonant frequencies in metamaterials

    Get PDF
    Although metamaterials and so-called left-handed media have originated from theoretical considerations, it is only by their practical fabrication and the measurement of their properties that they have gained credibility and can fulfil the potential of their predicted properties. In this review we consider some of the more generally applicable fabrication methods and changes in geometry as they have progressed, exhibiting resonant frequencies ranging from radio waves to the visible optical region

    Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding

    No full text
    We present several fundamental photonic building blocks based on suspended silicon waveguides supported by a lateral cladding comprising subwavelength grating metamaterial. We discuss the design, fabrication, and characterization of waveguide bends, multimode interference devices and Mach-Zehnder interferometers for the 3715 - 3800 nm wavelength range, demonstrated for the first time in this platform. The waveguide propagation loss of 0.82 dB/cm is reported, some of the lowest loss yet achieved in silicon waveguides for this wavelength range. These results establish a direct path to ultimately extending the operational wavelength range of silicon wire waveguides to the entire transparency window of silicon

    Novel sources of variation in grain Zinc (Zn) concentration in bread wheat germplasm derived from Watkins landraces

    Get PDF
    A diverse panel of 245 wheat genotypes, derived from crosses between landraces from the Watkins collection representing global diversity in the early 20th century and the modern wheat cultivar Paragon, was grown at two field sites in the UK in 2015–16 and the concentrations of zinc and iron determined in wholegrain using inductively coupled plasma-mass spectrometry (ICP-MS). Zinc concentrations in wholegrain varied from 24–49 mg kg-1 and were correlated with iron concentration (r = 0.64) and grain protein content (r = 0.14). However, the correlation with yield was low (r = -0.16) indicating little yield dilution. A sub-set of 24 wheat lines were selected from 245 wheat genotypes and characterised for Zn and Fe concentrations in wholegrain and white flour over two sites and years. White flours from 24 selected lines contained 8–15 mg kg-1 of zinc, which was positively correlated with the wholegrain Zn concentration (r = 0.79, averaged across sites and years). This demonstrates the potential to exploit the diversity in landraces to increase the concentration of Zn in wholegrain and flour of modern high yielding bread wheat cultivars
    • …
    corecore