936 research outputs found

    Mechanical restriction versus human overreaction triggering congested traffic states

    Full text link
    A new cellular automaton (CA) traffic model is presented. The focus is on mechanical restrictions of vehicles realized by limited acceleration and deceleration capabilities. These features are incorporated into the model in order to construct the condition of collision-free movement. The strict collision-free criterion imposed by the mechanical restrictions is softened in certain traffic situations, reflecting human overreaction. It is shown that the present model reliably reproduces most empirical findings including synchronized flow, the so-called {\it pinch effect}, and the time-headway distribution of free flow. The findings suggest that many free flow phenomena can be attributed to the platoon formation of vehicles ({\it platoon effect})Comment: 5 pages, 3 figures, to appear in PR

    Cellular automata approach to three-phase traffic theory

    Full text link
    The cellular automata (CA) approach to traffic modeling is extended to allow for spatially homogeneous steady state solutions that cover a two dimensional region in the flow-density plane. Hence these models fulfill a basic postulate of a three-phase traffic theory proposed by Kerner. This is achieved by a synchronization distance, within which a vehicle always tries to adjust its speed to the one of the vehicle in front. In the CA models presented, the modelling of the free and safe speeds, the slow-to-start rules as well as some contributions to noise are based on the ideas of the Nagel-Schreckenberg type modelling. It is shown that the proposed CA models can be very transparent and still reproduce the two main types of congested patterns (the general pattern and the synchronized flow pattern) as well as their dependence on the flows near an on-ramp, in qualitative agreement with the recently developed continuum version of the three-phase traffic theory [B. S. Kerner and S. L. Klenov. 2002. J. Phys. A: Math. Gen. 35, L31]. These features are qualitatively different than in previously considered CA traffic models. The probability of the breakdown phenomenon (i.e., of the phase transition from free flow to synchronized flow) as function of the flow rate to the on-ramp and of the flow rate on the road upstream of the on-ramp is investigated. The capacity drops at the on-ramp which occur due to the formation of different congested patterns are calculated.Comment: 55 pages, 24 figure

    Solitons and kinks in a general car-following model

    Full text link
    We study a car-following model of traffic flow which assumes only that a car's acceleration depends on its own speed, the headway ahead of it, and the rate of change of headway, with only minimal assumptions about the functional form of that dependence. The velocity of uniform steady flow is found implicitly from the acceleration function, and its linear stability criterion can be expressed simply in terms of it. Crucially, unlike in previously analyzed car-following models, the threshold of absolute stability does not generally coincide with an inflection point in the steady velocity function. The Burgers and KdV equations can be derived under the usual assumptions, but the mKdV equation arises only when absolute stability does coincide with an inflection point. Otherwise, the KdV equation applies near absolute stability, while near the inflection point one obtains the mKdV equation plus an extra, quadratic term. Corrections to the KdV equation "select" a single member of the one-parameter set of soliton solutions. In previous models this has always marked the threshold of a finite- amplitude instability of steady flow, but here it can alternatively be a stable, small-amplitude jam. That is, there can be a forward bifurcation from steady flow. The new, augmented mKdV equation which holds near an inflection point admits a continuous family of kink solutions, like the mKdV equation, and we derive the selection criterion arising from the corrections to this equation.Comment: 25 page

    Interpreting the Wide Scattering of Synchronized Traffic Data by Time Gap Statistics

    Full text link
    Based on the statistical evaluation of experimental single-vehicle data, we propose a quantitative interpretation of the erratic scattering of flow-density data in synchronized traffic flows. A correlation analysis suggests that the dynamical flow-density data are well compatible with the so-called jam line characterizing fully developed traffic jams, if one takes into account the variation of their propagation speed due to the large variation of the netto time gaps (the inhomogeneity of traffic flow). The form of the time gap distribution depends not only on the density, but also on the measurement cross section: The most probable netto time gap in congested traffic flow upstream of a bottleneck is significantly increased compared to uncongested freeway sections. Moreover, we identify different power-law scaling laws for the relative variance of netto time gaps as a function of the sampling size. While the exponent is -1 in free traffic corresponding to statistically independent time gaps, the exponent is about -2/3 in congested traffic flow because of correlations between queued vehicles.Comment: For related publications see http://www.helbing.or

    Memory effects in microscopic traffic models and wide scattering in flow-density data

    Full text link
    By means of microscopic simulations we show that non-instantaneous adaptation of the driving behaviour to the traffic situation together with the conventional measurement method of flow-density data can explain the observed inverse-λ\lambda shape and the wide scattering of flow-density data in ``synchronized'' congested traffic. We model a memory effect in the response of drivers to the traffic situation for a wide class of car-following models by introducing a new dynamical variable describing the adaptation of drivers to the surrounding traffic situation during the past few minutes (``subjective level of service'') and couple this internal state to parameters of the underlying model that are related to the driving style. % For illustration, we use the intelligent-driver model (IDM) as underlying model, characterize the level of service solely by the velocity and couple the internal variable to the IDM parameter ``netto time gap'', modelling an increase of the time gap in congested traffic (``frustration effect''), that is supported by single-vehicle data. % We simulate open systems with a bottleneck and obtain flow-density data by implementing ``virtual detectors''. Both the shape, relative size and apparent ``stochasticity'' of the region of the scattered data points agree nearly quantitatively with empirical data. Wide scattering is even observed for identical vehicles, although the proposed model is a time-continuous, deterministic, single-lane car-following model with a unique fundamental diagram.Comment: 8 pages, submitted to Physical Review

    Steady state solutions of hydrodynamic traffic models

    Full text link
    We investigate steady state solutions of hydrodynamic traffic models in the absence of any intrinsic inhomogeneity on roads such as on-ramps. It is shown that typical hydrodynamic models possess seven different types of inhomogeneous steady state solutions. The seven solutions include those that have been reported previously only for microscopic models. The characteristic properties of wide jam such as moving velocity of its spatiotemporal pattern and/or out-flux from wide jam are shown to be uniquely determined and thus independent of initial conditions of dynamic evolution. Topological considerations suggest that all of the solutions should be common to a wide class of traffic models. The results are discussed in connection with the universality conjecture for traffic models. Also the prevalence of the limit-cycle solution in a recent study of a microscopic model is explained in this approach.Comment: 9 pages, 6 figure

    Determination of Interaction Potentials in Freeway Traffic from Steady-State Statistics

    Full text link
    Many-particle simulations of vehicle interactions have been quite successful in the qualitative reproduction of observed traffic patterns. However, the assumed interactions could not be measured, as human interactions are hard to quantify compared to interactions in physical and chemical systems. We show that progress can be made by generalizing a method from equilibrium statistical physics we learned from random matrix theory. It allows one to determine the interaction potential via distributions of the netto distances s of vehicles. Assuming power-law interactions, we find that driver behavior can be approximated by a forwardly directed 1/s potential in congested traffic, while interactions in free traffic are characterized by an exponent of approximately 4. This is relevant for traffic simulations and the assessment of telematic systems.Comment: For related work see http://www.helbing.or

    Z3_3-graded differential geometry of quantum plane

    Full text link
    In this work, the Z3_3-graded differential geometry of the quantum plane is constructed. The corresponding quantum Lie algebra and its Hopf algebra structure are obtained. The dual algebra, i.e. universal enveloping algebra of the quantum plane is explicitly constructed and an isomorphism between the quantum Lie algebra and the dual algebra is given.Comment: 17 page

    Derivation, Properties, and Simulation of a Gas-Kinetic-Based, Non-Local Traffic Model

    Full text link
    We derive macroscopic traffic equations from specific gas-kinetic equations, dropping some of the assumptions and approximations made in previous papers. The resulting partial differential equations for the vehicle density and average velocity contain a non-local interaction term which is very favorable for a fast and robust numerical integration, so that several thousand freeway kilometers can be simulated in real-time. The model parameters can be easily calibrated by means of empirical data. They are directly related to the quantities characterizing individual driver-vehicle behavior, and their optimal values have the expected order of magnitude. Therefore, they allow to investigate the influences of varying street and weather conditions or freeway control measures. Simulation results for realistic model parameters are in good agreement with the diverse non-linear dynamical phenomena observed in freeway traffic.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://www.theo2.physik.uni-stuttgart.de/treiber.htm

    Long-lived states in synchronized traffic flow. Empirical prompt and dynamical trap model

    Full text link
    The present paper proposes a novel interpretation of the widely scattered states (called synchronized traffic) stimulated by Kerner's hypotheses about the existence of a multitude of metastable states in the fundamental diagram. Using single vehicle data collected at the German highway A1, temporal velocity patterns have been analyzed to show a collection of certain fragments with approximately constant velocities and sharp jumps between them. The particular velocity values in these fragments vary in a wide range. In contrast, the flow rate is more or less constant because its fluctuations are mainly due to the discreteness of traffic flow. Subsequently, we develop a model for synchronized traffic that can explain these characteristics. Following previous work (I.A.Lubashevsky, R.Mahnke, Phys. Rev. E v. 62, p. 6082, 2000) the vehicle flow is specified by car density, mean velocity, and additional order parameters hh and aa that are due to the many-particle effects of the vehicle interaction. The parameter hh describes the multilane correlations in the vehicle motion. Together with the car density it determines directly the mean velocity. The parameter aa, in contrast, controls the evolution of hh only. The model assumes that aa fluctuates randomly around the value corresponding to the car configuration optimal for lane changing. When it deviates from this value the lane change is depressed for all cars forming a local cluster. Since exactly the overtaking manoeuvres of these cars cause the order parameter aa to vary, the evolution of the car arrangement becomes frozen for a certain time. In other words, the evolution equations form certain dynamical traps responsible for the long-time correlations in the synchronized mode.Comment: 16 pages, 10 figures, RevTeX
    • …
    corecore