We study a car-following model of traffic flow which assumes only that a
car's acceleration depends on its own speed, the headway ahead of it, and the
rate of change of headway, with only minimal assumptions about the functional
form of that dependence. The velocity of uniform steady flow is found
implicitly from the acceleration function, and its linear stability criterion
can be expressed simply in terms of it. Crucially, unlike in previously
analyzed car-following models, the threshold of absolute stability does not
generally coincide with an inflection point in the steady velocity function.
The Burgers and KdV equations can be derived under the usual assumptions, but
the mKdV equation arises only when absolute stability does coincide with an
inflection point. Otherwise, the KdV equation applies near absolute stability,
while near the inflection point one obtains the mKdV equation plus an extra,
quadratic term. Corrections to the KdV equation "select" a single member of the
one-parameter set of soliton solutions. In previous models this has always
marked the threshold of a finite- amplitude instability of steady flow, but
here it can alternatively be a stable, small-amplitude jam. That is, there can
be a forward bifurcation from steady flow. The new, augmented mKdV equation
which holds near an inflection point admits a continuous family of kink
solutions, like the mKdV equation, and we derive the selection criterion
arising from the corrections to this equation.Comment: 25 page