50 research outputs found

    Adverse effect of two-spotted spider mite (Tetranychus urticae Koch) on soybean protein composition

    Get PDF
    Damage induced on soybean by Tetranychus urticae Koch (Acari: Tetranychidae) is easily recognizable. We were curious to know whether, in addition to this visual and quantitative damage, change occurs also in the nutritional value of the harvested product. The Weendei analysis showed that as compared to the healthy items, the protein content (P=0.048) of the miteinjured seeds as well as their composition (P=0.048) has changed. No significant changes in the raw fat content could be confirmed by the statistical results of the study (P=0.643). Concerning the contents of raw ash (P=0.069) and raw fibre (P=0.859), there were no significant differences. Three distinct changes in protein structure were confirmed by gel electrophoresis. Substantially less 69 kDa protein was detectable in the infested soybean, whereas no 48 kDa protein was present in the control sample; it only appeared in the infested ones. There was a higher amount of 30 kDa protein in the infested stock. In summary, alteration in the protein structure was caused by T. urticae, and changes were triggered in the protein content of the affected soybean plants. The protein structure-change in damaged soybean items caused further decline in the feed consuming capacity of farm animals

    Mapping of Genes Involved in Glutathione, Carbohydrate and COR14b Cold Induced Protein Accumulation during Cold Hardening in Wheat

    Full text link
    Using some of the chromosome substitution lines developed from the crosses of the donor Cheyenne to Chinese Spring we showed that the accumulation of water soluble carbohydrates during different stages of hardening was time dependent. Moreover there was a significant correlation between the rate of carbohydrate accumulation and the frost tolerance. The expression and regulation of a wheat gene homologous to the barley cold regulated cor14b gene was compared in frost sensitive and frost tolerant wheat genotypes at different temperatures. Studies made with chromosome substitution lines showed that the threshold induction temperature polymorphism of the cor14b wheat homologous gene was controlled by loci located on chromosome 5A of wheat, while cor14b gene was mapped, in Triticum monococcum, onto the long arm of chromosome 2Am. Our study on the effect of cold hardening on glutathione (GSH) metabolism showed that chromosome 5A of wheat has an influence on the GSH accumulation and on the ratio of reduced and oxidised glutathione as part of a complex regulatory function during cold hardening. In addition, the level of increase in GSH content during hardening may indicate the degree of the frost tolerance of wheat

    Transcriptomic analysis of the temporal host response to skin infestation with the ectoparasitic mite Psoroptes ovis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infestation of ovine skin with the ectoparasitic mite <it>Psoroptes ovis </it>results in a rapid cutaneous immune response, leading to the crusted skin lesions characteristic of sheep scab. Little is known regarding the mechanisms by which such a profound inflammatory response is instigated and to identify novel vaccine and drug targets a better understanding of the host-parasite relationship is essential. The main objective of this study was to perform a combined network and pathway analysis of the <it>in vivo </it>skin response to infestation with <it>P. ovis </it>to gain a clearer understanding of the mechanisms and signalling pathways involved.</p> <p>Results</p> <p>Infestation with <it>P. </it>ovis resulted in differential expression of 1,552 genes over a 24 hour time course. Clustering by peak gene expression enabled classification of genes into temporally related groupings. Network and pathway analysis of clusters identified key signalling pathways involved in the host response to infestation. The analysis implicated a number of genes with roles in allergy and inflammation, including pro-inflammatory cytokines (<it>IL1A, IL1B, IL6, IL8 </it>and <it>TNF</it>) and factors involved in immune cell activation and recruitment (<it>SELE, SELL, SELP, ICAM1, CSF2, CSF3, CCL2 </it>and <it>CXCL2</it>). The analysis also highlighted the influence of the transcription factors NF-kB and AP-1 in the early pro-inflammatory response, and demonstrated a bias towards a Th2 type immune response.</p> <p>Conclusions</p> <p>This study has provided novel insights into the signalling mechanisms leading to the development of a pro-inflammatory response in sheep scab, whilst providing crucial information regarding the nature of mite factors that may trigger this response. It has enabled the elucidation of the temporal patterns by which the immune system is regulated following exposure to <it>P. ovis</it>, providing novel insights into the mechanisms underlying lesion development. This study has improved our existing knowledge of the host response to <it>P. ovis</it>, including the identification of key parallels between sheep scab and other inflammatory skin disorders and the identification of potential targets for disease control.</p

    Water-Soluble Carbohydrates in Dried Plant

    No full text

    Effect of cotton bollworm (Helicoverpa armigera Hübner) caused injury on maize grain content, especially regarding to the protein alteration

    No full text
    The cotton bollworm (Helicoverpa armigera Hübner), which migrated in the Carpathian-basin from Mediterraneum in the last decades, is becoming an increasingly serious problem for maize producers in Hungary. In several regions the damage it causes has reached the threshold of economic loss, especially in the case of the sweet maize cultivation. The aim of the research was to determine the changing of ears weights and in-kernel accumulation and alteration in grain as a function of cotton bollworm mastication.Our investigation confirmed that there is an in-kernel and protein pattern change of maize grain by cotton bollworm. Our results proved the significant damaging of each part of ears by cotton bollworm masticating (the average weight loss of ears: 13.99%; the average weight loss of grains: 14.03%; the average weight loss of cobs: 13.74%), with the exception of the increasing of the grain-cob ratio. Our examinations did not prove the water loss — that is the “forced maturing” — caused by the damage. Decreasing of raw fat (control: 2.8%; part-damaged: 2.6%; damaged: 2.4%) and starch content (control: 53.1%; part-damaged: 46.6%; damaged: 44.7%) were registered as a function of injury. In contrast, the raw protein content was increased (control: 4.7%; part-damaged: 5.3%; damaged: 7.4%) by maize ear masticating. The most conspicuous effect on protein composition changing was proved by comparison of damaged grain samples by SDS PAGE. Increased amounts of 114, 50, 46 and 35 kDa molecular mass proteins were detected which explained the more than 50% elevation of raw protein content. The statistical analysis of molecular weights proved the protein realignment as a function of the pest injuries, too

    Identification of plant taxons by isoelectric focusing

    No full text
    Differences were demonstrated in esterasei coenzyme pattern of some essential oil producing plants belonging to the Apiaceae family — fennel (Foeniculum vulgare Mill.), angelica (Angelica archangelica L.), lovage (Levisticum officinale Koch.), dill (Anethum graveolens L.), coriander (Coriandrum sativum L.), anise (Pimpinella anisum L.), caraway (Carum carvi L.) — as well as differences between two varieties of fennel seed by using isoelectric focusing. That method provides quality control in essential oil plants and is suitable to describe isoenzyme pattern characteristic for taxons. Based on our findings, isoelectric focusing seems to be suitable for identification and differentiation of different plant samples, providing an easy tool for further processing as well as for breeding. Our further aim is to apply that method to differentiate among samples belonging to the same species according to their value of inner content. &nbsp

    Identification of plant taxons by isoelectric focusing

    No full text
    Differences were demonstrated in esterasei coenzyme pattern of some essential oil producing plants belonging to the Apiaceae family — fennel (Foeniculum vulgare Mill.), angelica (Angelica archangelica L.), lovage (Levisticum officinale Koch.), dill (Anethum graveolens L.), coriander (Coriandrum sativum L.), anise (Pimpinella anisum L.), caraway (Carum carvi L.) — as well as differences between two varieties of fennel seed by using isoelectric focusing. That method provides quality control in essential oil plants and is suitable to describe isoenzyme pattern characteristic for taxons. Based on our findings, isoelectric focusing seems to be suitable for identification and differentiation of different plant samples, providing an easy tool for further processing as well as for breeding. Our further aim is to apply that method to differentiate among samples belonging to the same species according to their value of inner content. &nbsp
    corecore