433 research outputs found

    Initial development of soil structure and soil organic matter in an agriculturally managed chronosequence on recultivated loess

    Get PDF
    Soil structure and soil organic matter (SOM) are closely connected characteristics of a soil material. Their interactions affect various physical, chemical and biological soil properties like water holding capacity, carbon stabilization and microbial habitat. The intertwined development of soil structure and quality and quantity of SOM during soil formation are not clear until now. We used a chronosequence approach in the recultivated open-cast mining area near Cologne, Germany to elucidate the development of soil structure and soil organic matter during initial soil formation in a loess material. We selected six plots with different ages of agricultural management after recultivation (0, 1, 3, 6, 12, and 24 years after first seeding). In each plot 12 spatially independent locations were sampled with stainless steel cylinders (100 cm3) at three depths representing the topsoil (1-5 cm), the plough layer (16-20 cm), and the management-unaffected parent material (41-45 cm). All samples were analysed for bulk density, organic and inorganic carbon and nitrogen content, and aggregate size distribution. We evaluated the development of aggregation and soil organic matter stocks during this early phase of soil formation. This system is temporarily highly dynamic and shows different developments for bulk density, SOM and aggregate formation. In just one year bulk density increased to an average of 1.6 g/cm³ and remained stable for the next three years. After agricultural management with ploughing and cultivation from the 6 years, all sites showed bulk density decrease, which remained stable from topsoil to parent material after 12 years with average bulk density 1,5 g/cm3. Soil carbon content increased during the chronosequence and showed highest variability from 2,3 mgC/g to 18,7 mgC/g in the 3 years old field, which shows the beginning of the interaction between soil and biota, and carbon input

    Does ultrasonic dispersion and homogenization by ball milling change the chemical structure of organic matter in geochemical samples?—a CPMAS 13C NMR study with lignin

    Get PDF
    6 pages, 2 figures, 2 tables, 23 references.Ultrasonic dispersion of geochemical samples suspended in water and subsequent homogenization by ball milling is widely used for fractionation of organic matter. The effect of these treatments on organic matter is investigated with lignin as a model compound. Structural alterations detectable by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy were examined. Comparison of the solid-state 13C NMR spectra of untreated lignin and lignin mixed with quartz or soil did not reveal evidence for structural changes in the organic matter composition after ultrasonic dispersion and subsequent ball-milling. The chemical structure of organic matter in geochemical samples is not affected by these treatments as far as such structural alterations can be detected by solid-state 13C NMR spectroscopy.This work was financially supported by the Deutsche Forschungsgemeinschaft (Ko 1035/6-land 2) and the Deutscher Akademischer Austauschdienst (Ref. 315, D/94/16993).Peer reviewe

    Airborne contamination of forest soils by carbonaceous particles from industrial coal processing

    Get PDF
    In the German Ruhr-area industrial coal processing emitted large amounts of carbonaceous particles for a century until 1970. Our objectives were to detect the presence of airborne carbonaceous particles and assess their impact on the chemical structure of soil organic matter in two forest soils (Podzols) with potential sources of carbonaceous particles approximately 10 to 30 km away. Contamination was not visible macroscopicaily. Organic matter was characterized in bulk soils and in particle-size separates by elemental analysis, magnetic susceptibility measurement, reflected light microscopy, and 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Organic and mineral horizons contained carbonaceous particles including char, coke, and bituminous coal from coal combustion, coking, coal processing, and steel production. In the organic horizons of both soils we observed a material high in magnetic susceptibility (max. 109 × 10−8 m3 kg−1), whereas in the mineral horizons only the Podzol with an intense intermixing moder-type humus had high magnetic susceptibly. This Aeh horizon was extremely rich in organic carbon (139.4 g organic C kg−1), concentrated in the 20 to 2000 µm size separates. In the second Podzol, like in many natural soils, C concentrations were largest in the <20 µm separates. Bloch decay 13C magic angle spinning (MAS) NMR spectroscopy revealed a highly aromatic structure of the carbonaceous particles. Airborne carbonaceous particles formed a macroscopically indistinguishable mixture with natural soil organic matter and could be present in many soils neighboring industrialized areas.Peer reviewe

    The human SKI complex regulates channeling of ribosome-bound RNA to the exosome via an intrinsic gatekeeping mechanism

    Get PDF
    The superkiller (SKI) complex is the cytoplasmic co-factor and regulator of the RNA-degrading exosome. In human cells, the SKI complex functions mainly in co-translational surveillance-decay pathways, and its malfunction is linked to a severe congenital disorder, the trichohepatoenteric syndrome. To obtain insights into the molecular mechanisms regulating the human SKI (hSKI) complex, we structurally characterized several of its functional states in the context of 80S ribosomes and substrate RNA. In a prehydrolytic ATP form, the hSKI complex exhibits a closed conformation with an inherent gating system that effectively traps the 80S-bound RNA into the hSKI2 helicase subunit. When active, hSKI switches to an open conformation in which the gating is released and the RNA 3′ end exits the helicase. The emerging picture is that the gatekeeping mechanism and architectural remodeling of hSKI underpin a regulated RNA channeling system that is mechanistically conserved among the cytoplasmic and nuclear helicase-exosome complexes

    Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals

    Get PDF
    Conceptual models suggest that stability of organic carbon (OC) in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organomineral complexes, and location within the soil profile. Density fractionation is a useful tool to study the relevance of OC stabilization in aggregates and in association with minerals, but it has rarely been applied to full soil profiles. We aim to determine factors shaping the depth profiles of physically unprotected and mineral associated OC and test their relevance for OC stability across a range of European soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions - fLF, occluded light fractions - oLF, heavy fractions - HF) were analysed for OC, total nitrogen (TN), δ13C, and Δ14C Bulk samples were also incubated to determine CO2 evolution per g OC in the samples (specific mineralization rates) as an indicator for OC stability. Depth profiles of OC in the light fraction (LF-OC) matched those of roots for undisturbed grassland and forest sites, suggesting that roots are shaping the depth distribution of LF-OC. Organic C in the HF declined less with soil depth than LF-OC and roots, especially at grassland sites. The decrease in Δ14C (increase in age) of HF-OC with soil depth was related to soil pH as well as to dissolved OC fluxes. This indicates that dissolved OC translocation contributes to the formation of subsoil HF-OC and shapes the Δ14C profiles. The LF at three sites were rather depleted in 14C, indicating the presence of fossil material such as coal and lignite, probably inherited from the parent material. At the other sites, modern Δ14C signatures and pos sit tive correlations between specific mineralization rates and fLF-OC indicate the fLF is a potentially available energy and nutrient source for subsurface microorganisms throughout the profile. Declining specific mineralization rates with soil depth confirm greater stability of OC in subsoils across sites. The overall importance of OC stabilization by binding to minerals was demonstrated by declining specific mineralization rates with increasing contributions of HF-OC to bulk soil OC, and the low Δ14C values of HF-OC. The stability of HF-OC was greater in subsoils than in topsoils; nevertheless, a portion of HF-OC was active throughout the profile. While quantitatively less important than OC in the HF, consistent older ages of oLF-OC than fLF-OC suggest that occlusion of LF-OC in aggregates also contributes to OC stability in subsoils. Overall, our results indicate that association with minerals is the most important factor in stabilization of OC in soils, irrespective of vegetation, soil type, and land use. © Author(s) 2013.European Unio

    Contrasting soil organic matter properties of a Hawaiian Andosol revealed by fractionations procedures

    Get PDF
    Volcanic Andosols are recognized by their strong capacity to accumulate soil organic carbon (SOC), and for presenting a singular aggregation pattern. However, the factors that govern their SOC storage and aggregation hierarchy are still poorly understood. In this way, the objective of this study was to evaluate the soil organic matter (SOM) properties of an Andosol through CN analysis, NMR spectroscopy, and scanning electron microscopy (SEM) with subsequent nano scale secondary ion mass spectrometry (NanoSIMS) analysis in the soil mineral fraction testing different fractionation methods. We tested three Andosol samples from two sites of the Kohala region – Hawaii with contrasting precipitation levels. The samples tested were as follow: 1784-60, 1784-80 and 2286-50 (precipitation - average depth in cm). We performed the SOM fractionation using ultrasonic dispersion at 1500 J ml-1, wet sieving and sedimentation. The procedure was carried out in three sets: in deionized water, in 1M NaCL solution, and in polytungstate solution (SPT) 1.8 g cm-3. Six fractions were obtained as follow: free particulate organic matter (fPOM), occluded particulate organic matter (oPOM), 4000-63, 63-20, 20-2 and &lt; 2µm, respectively. Overall, the pre-dispersion treatment with NaCL saturation did not influence the C content and its distribution, as well as the SOM composition observed by NMR and NanoSIMS analysis. The oPOM fraction revealed great differences between the contrasting samples 1784-60 and 2286-50 in C content and SOM composition. More than 90% of the soil mass was concentrated in the fractions below 20 µm. The &lt;2µm fraction was the most representative for the evaluated Andosol, accounting with 83% of the C content and 74% of the soil mass for the three samples evaluated overall. The 2286-50 presented a higher C content than the other samples especially for fPOM and the &lt; 2 µm fraction. The 2286-50 sample presented overall a dominance of alkyl-C, while 1784-60 showed higher amounts of carboxyl-C and O/N alkyl groups, which can be explained by differences in the mineral composition of each sample. In addition, the NanoSIMS analysis demonstrated distinct spatial differences in the distribution of 12C- and 12C14N- in organo-mineral associations at the micro scale between the two sites. The results of this study suggest that mineral interactions in the smaller size-fractions (&lt;2µm) can be the key to explain the mechanisms of C storage in Andosols

    The modeling of reactive solute transport with sorption to mobile and immobile sorbents.

    Get PDF
    This paper presents a mathematical model to describe the transport of reactive solutes with sorption to mobile and immobile sorbents. The mobile sorbent is considered to be reactive, too. The sorption processes mentioned are equilibrium and nonequilibrium processes. A transformation of the model in terms of total concentrations of solute and mobile sorbents is presented which simplifies the mathematical formulation. Effective isotherms, which describe the sorption to the immobile sorbent in the presence of a mobile sorbent and rate functions are introduced and their properties are discussed. The differences to existing approaches to model reactive solute transport are shown. Possible extensions are pointed out and the numerical approximation is sketched. The restrictions of the model as a consequence of the assumptions made on reactive solute transport are not due to mathematical reasons, but due to limitations of experimental information available

    How are soil use and management reflected by soil organic matter characteristics: a spectroscopic approach

    Get PDF
    We studied the quantitative and qualitative changes of soil organic matter (SOM) due to different land uses (arable versus grassland) and treatments (organic manure and mineral fertilizer) within an agricultural crop rotation in a long-term field experiment, conducted since 1956 at Ultuna, Sweden, on a Eutric Cambisol. The organic carbon (OC) content of the grassland plot was 1.8 times greater than that of the similarly fertilized Ca(NO3) 2 treated cropped plots. The comparison of two dispersion techniques (a lowenergy sonication and a chemical dispersion which yield inherent soil aggregates) showed that increasing OC contents of the silt-sized fractions were not matched by a linear increase of silt-sized aggregates. This indicated saturation of the aggregates with OC and a limited capacity of particles to protect OC physically. Thermogravimetric analyses suggested an increase of free organic matter with increasing OC contents. Transmission FT-IR spectroscopy showed relative enrichment of carboxylic, aromatic, CH and NH groups in plots with increasing OC contents. The silt-sized fractions contained the largest SOM pool and, as revealed by 13C NMR spectroscopy, were qualitatively more influenced by the plant residue versus manure input than the clay fractions. Alkyl and O-alkyl C in the silt-sized fractions amounted to 57.4% of organic carbon in the animal manure treated plots and 50–53% in the other treatments.We thank the Austrian Science Fund (Fonds zur FÖrderung der wissenschaftlichen Forschung) for funding this bilateral project.Peer reviewe

    Intensive grazing leads to degradation and spatial homogenization of topsoils in two major steppetypes in Inner Mongolia , P .R . China

    Get PDF
    Introduction Intensive land use and especially overgrazing in semi‐arid grasslands results in degradation of steppe vegetation associated with changes in the amount ,composition ,and turnover of soil organic matter (SOM) . The concurrent degradation of soil structure and destruction of aggregation leads to enhanced soil erosion .The effectof intensive grazing on the amount and composition of SOM was assessed by comparison of grazed and ungrazed plots in Leymus chinensis and Stipa grandis dominated steppe types in Inner Mongolia ,Chin
    corecore