16,360 research outputs found

    Correlated bursts and the role of memory range

    Get PDF
    Inhomogeneous temporal processes in natural and social phenomena have been described by bursts that are rapidly occurring events within short time periods alternating with long periods of low activity. In addition to the analysis of heavy-tailed inter-event time distributions, higher-order correlations between inter-event times, called correlated bursts, have been studied only recently. As the possible mechanisms underlying such correlated bursts are far from being fully understood, we devise a simple model for correlated bursts by using a self-exciting point process with variable memory range. Here the probability that a new event occurs is determined by a memory function that is the sum of decaying memories of the past events. In order to incorporate the noise and/or limited memory capacity of systems, we apply two memory loss mechanisms, namely either fixed number or variable number of memories. By using theoretical analysis and numerical simulations we find that excessive amount of memory effect may lead to a Poissonian process, which implies that for memory effect there exists an intermediate range that will generate correlated bursts of magnitude comparable to empirical findings. Hence our results provide deeper understanding of how long-range memory affects correlated bursts.Comment: 9 pages, 7 figure

    Measuring the Hidden Aspects of Solar Magnetism

    Full text link
    2008 marks the 100th anniversary of the discovery of astrophysical magnetic fields, when George Ellery Hale recorded the Zeeman splitting of spectral lines in sunspots. With the introduction of Babcock's photoelectric magnetograph it soon became clear that the Sun's magnetic field outside sunspots is extremely structured. The field strengths that were measured were found to get larger when the spatial resolution was improved. It was therefore necessary to come up with methods to go beyond the spatial resolution limit and diagnose the intrinsic magnetic-field properties without dependence on the quality of the telescope used. The line-ratio technique that was developed in the early 1970s revealed a picture where most flux that we see in magnetograms originates in highly bundled, kG fields with a tiny volume filling factor. This led to interpretations in terms of discrete, strong-field magnetic flux tubes embedded in a rather field-free medium, and a whole industry of flux tube models at increasing levels of sophistication. This magnetic-field paradigm has now been shattered with the advent of high-precision imaging polarimeters that allow us to apply the so-called "Second Solar Spectrum" to diagnose aspects of solar magnetism that have been hidden to Zeeman diagnostics. It is found that the bulk of the photospheric volume is seething with intermediately strong, tangled fields. In the new paradigm the field behaves like a fractal with a high degree of self-similarity, spanning about 8 orders of magnitude in scale size, down to scales of order 10 m.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Innovation and Nested Preferential Growth in Chess Playing Behavior

    Full text link
    Complexity develops via the incorporation of innovative properties. Chess is one of the most complex strategy games, where expert contenders exercise decision making by imitating old games or introducing innovations. In this work, we study innovation in chess by analyzing how different move sequences are played at the population level. It is found that the probability of exploring a new or innovative move decreases as a power law with the frequency of the preceding move sequence. Chess players also exploit already known move sequences according to their frequencies, following a preferential growth mechanism. Furthermore, innovation in chess exhibits Heaps' law suggesting similarities with the process of vocabulary growth. We propose a robust generative mechanism based on nested Yule-Simon preferential growth processes that reproduces the empirical observations. These results, supporting the self-similar nature of innovations in chess are important in the context of decision making in a competitive scenario, and extend the scope of relevant findings recently discovered regarding the emergence of Zipf's law in chess.Comment: 8 pages, 4 figures, accepted for publication in Europhysics Letters (EPL

    Drug Prescription Pattern in a Nigerian Tertiary Hospital

    Get PDF
    Purpose: To evaluate the prescribing pattern of clinicians in the general outpatient unit of the Aminu Kano Teaching Hospital, Kano (AKTH),.Methods: This was a descriptive retrospective study conducted using 500 prescriptions made at the general outpatient unit of AKTH between April and July 2009.Results: A total of 497 prescriptions were successfully analyzed. The average number of drugs per encounter in the facility was 3.04. Generic prescribing was low at 42.7 % while antibiotic prescription was high at 34.4 %. Injections were prescribed in 4 % of encounters while 36.2, 19.1, 25.8 and 1 % of encounters had analgesics, antimalarials, antihypertensives and anxiolytics prescribed, respectively. Vitamins were prescribed in 9.7 % of encounters. Conclusion: Polypharmacy, low rate of generic prescriptions and overuse of antibiotics still remain a problem in health care facilities in Nigeria.. This calls for sustained interventional strategies and periodic audit at all levels of health care to avoid the negative consequences of inappropriate prescriptions.Keywords: Prescribing pattern, Generic drugs, Tertiary hospital, Essential drugs, Nigeri

    Three-loop HTL gluon thermodynamics at intermediate coupling

    Get PDF
    We calculate the thermodynamic functions of pure-glue QCD to three-loop order using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature quantum field theory. We show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T3  TcT\simeq3\;T_c. Our results suggest that HTLpt provides a systematic framework that can used to calculate static and dynamic quantities for temperatures relevant at LHC.Comment: 24 pages, 13 figs. 2nd version: improved discussion and fixing typos. Published in JHE

    K. Sridhar Moorthy’s Theoretical Modelling in Marketing - A Review

    Get PDF
    Modelling has become a visible tool in many disciplines including marketing and several marketing models have been constructed. These models serve their pedagogical and practical purposes in some cases. However, among the marketing models so often cited is Moorthy‟s Theoretical Modelling in Marketing. This model is important, and hence this review once more, in that it offers a starting point, and in some cases the finishing line, for those who want to tread the pedestrian of modelling in marketing. But this is not the end; it also provides an explanation for those who want to know more about modelling in general by providing answers to some basic questions about the use of models. Our discussion here will certainly bring in many people who have been peeping into marketing modelling from behind the wall.Key words: Marketing, Modelling, Moorthy, Pedagogy, Theoretica

    Interaction-induced Interlayer Charge Transfer in the Extreme Quantum Limit

    Full text link
    An interacting bilayer electron system provides an extended platform to study electron-electron interaction beyond single layers. We report here experiments demonstrating that the layer densities of an asymmetric bilayer electron system oscillate as a function of perpendicular magnetic field that quantizes the energy levels. At intermediate fields, this interlayer charge transfer can be well explained by the alignment of the Landau levels in the two layers. At the highest fields where both layers reach the extreme quantum limit, however, there is an anomalous, enhanced charge transfer to the majority layer. Surprisingly, when the minority layer becomes extremely dilute, this charge transfer slows down as the electrons in the minority layer condense into a Wigner crystal. Furthermore, by examining the quantum capacitance of the dilute layer at high fields, the screening induced by the composite fermions in an adjacent layer is unveiled. The results highlight the influence of strong interaction in interlayer charge transfer in the regime of very high fields and low Landau level filling factors.Comment: Please see the formal version on PR

    Three-loop HTL QCD thermodynamics

    Get PDF
    The hard-thermal-loop perturbation theory (HTLpt) framework is used to calculate the thermodynamic functions of a quark-gluon plasma to three-loop order. This is the highest order accessible by finite temperature perturbation theory applied to a non-Abelian gauge theory before the high-temperature infrared catastrophe. All ultraviolet divergences are eliminated by renormalization of the vacuum, the HTL mass parameters, and the strong coupling constant. After choosing a prescription for the mass parameters, the three-loop results for the pressure and trace anomaly are found to be in very good agreement with recent lattice data down to T23TcT \sim 2-3\,T_c, which are temperatures accessible by current and forthcoming heavy-ion collision experiments.Comment: 27 pages, 11 figures; corresponds with published version in JHE
    corecore