926 research outputs found

    Magnetic flux pumping in 3D nonlinear magnetohydrodynamic simulations

    Full text link
    A self-regulating magnetic flux pumping mechanism in tokamaks that maintains the core safety factor at q1q\approx 1, thus preventing sawteeth, is analyzed in nonlinear 3D magnetohydrodynamic simulations using the M3D-C1^1 code. In these simulations, the most important mechanism responsible for the flux pumping is that a saturated (m=1,n=1)(m=1,n=1) quasi-interchange instability generates an effective negative loop voltage in the plasma center via a dynamo effect. It is shown that sawtoothing is prevented in the simulations if β\beta is sufficiently high to provide the necessary drive for the (m=1,n=1)(m=1,n=1) instability that generates the dynamo loop voltage. The necessary amount of dynamo loop voltage is determined by the tendency of the current density profile to centrally peak which, in our simulations, is controlled by the peakedness of the applied heat source profile.Comment: submitted to Physics of Plasmas (23 pages, 15 Figures

    Measurement of the 0.511 MeV gamma ray line from the Galactic Center

    Get PDF
    The detection of the 0.511 MeV electron positron annihilation line coming from the Galactic Center to provide the means to estimate the rate of positron production and to test some theoretical sources of positrons is addressed. The results of the measurements of the 0.511 MeV line flux made with a gamma ray experiment on board a stratospheric balloon are presented. The detector field of view looked at the galactic longitude range -31 deg l(II) +41 deg. The observed flux is 0.0067 (+ or - 0.0005) photons 1/cm(2)5 which is in very good agreement with the expected flux when assuming that the Galactic Center is a line source emitting uniformly

    A new explanation of the sawtooth phenomena in tokamaks

    Get PDF
    The ubiquitous sawtooth phenomena in tokamaks are so named because the central temperature rises slowly and falls rapidly, similar to the blades of a saw. First discovered in 1974, it has so far eluded a theoretical explanation that is widely accepted and consistent with experimental observations. We propose here a new theory for the sawtooth phenomena in auxiliary heated tokamaks, which is motivated by our recent understanding of "magnetic flux pumping." In this theory, the role of the (m, n) = (1, 1) mode is to generate a dynamo voltage, which keeps the central safety factor, q(0), just above 1.0 with low central magnetic shear. When central heating is present, the temperature on axis will increase until at some point, and the configuration abruptly becomes unstable to ideal MHD interchange modes with equal poloidal and toroidal mode numbers, m = n &gt; 1. It is these higher order modes and the localized magnetic stochasticity they produce that cause the sudden crash of the temperature profile, not magnetic reconnection. Long time 3D MHD simulations demonstrate these phenomena, which appear to be consistent with many experimental observations.</p

    3D simulations of vertical displacement events in tokamaks: A benchmark of M3D-C1^1, NIMROD and JOREK

    Full text link
    In recent years, the nonlinear 3D magnetohydrodynamic codes JOREK, M3D-C1^1 and NIMROD developed the capability of modelling realistic 3D vertical displacement events (VDEs) including resistive walls. In this paper, a comprehensive 3D VDE benchmark is presented between these state of the art codes. The simulated case is based on an experimental NSTX plasma but with a simplified rectangular wall. In spite of pronounced differences between physics models and numerical methods, the comparison shows very good agreement in the relevant quantities used to characterize disruptions such as the 3D wall forces and energy decay. This benchmark does not only bring confidence regarding the use of the mentioned codes for disruption studies, but also shows differences with respect to the used models (e.g. reduced versus full MHD models). The simulations show important 3D features for a NSTX plasma such as the self-consistent evolution of the halo current and the origin of the wall forces. In contrast to other reduced MHD models based on an ordering in the aspect ratio, the ansatz based JOREK reduced MHD model allows capturing the 3D dynamics even in the spherical tokamak limit considered here

    Experimental estimation of tungsten impurity sputtering due to Type I ELMs in JET-ITER-like wall using pedestal electron cyclotron emission and target Langmuir probe measurements

    Get PDF
    The ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode and will be achieved with a tungsten (W) divertor. W atoms sputtered from divertor targets during mitigated ELMs are expected to be the dominant source in ITER. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of the target W source due to sputtering during ELMs and inter-ELMs is important and can be helped by experimental measurements with improved precision. It has been established that the ELMy target ion impact energy has a simple linear dependence with the pedestal electron temperature measured by Electron Cyclotron Emission (ECE). It has also been shown that Langmuir Probes (LP) ion flux measurements are reliable during ELMs due to the surprisingly low electron temperature. Therefore, in this paper, LP and ECE measurements in JET-ITER-Like-Wall (ILW) unseeded Type I ELMy H-mode experiments have been used to estimate the W sputtering flux from divertor targets in ELM and inter-ELM conditions. Comparison with similar estimates using W I spectroscopy measurements shows a reasonable agreement for the ELM and inter-ELM W source. The main advantage of the method involving LP measurements is the very high time resolution of the diagnostic (∼10 μs) allowing very precise description of the W sputtering source during ELMs.EURATOM 633053MSMT INGO LG14002Fundação para a Ciência e Tecnologia UID/FIS/50010/201

    Axisymmetric simulations of vertical displacement events in tokamaks: A benchmark of M3D-C1, NIMROD and JOREK

    Get PDF
    A benchmark exercise for the modeling of vertical displacement events(VDEs) is presented and applied to the 3D nonlinear magneto-hydrodynamic codesM3D-C1, JOREK and NIMROD. The simulations are based on a vertically unstableNSTX equilibrium enclosed by an axisymmetric resistive wall with rectangular crosssection. A linear dependence of the linear VDE growth rates on the resistivity ofthe wall is recovered for sufficiently large wall conductivity and small temperatures inthe open field line region. The benchmark results show good agreement between theVDE growth rates obtained from linear NIMROD and M3D-C1simulations as wellas from the linear phase of axisymmetric nonlinear JOREK, NIMROD and M3D-C1simulations. Axisymmetric nonlinear simulations of a full VDE performed with thethree codes are compared and excellent agreement is found regarding plasma locationand plasma currents as well as eddy and halo currents in the wall.</p

    A two‐stage Bayesian network model for corporate bankruptcy prediction

    Get PDF
    We develop a Bayesian network (LASSO-BN) model for firm bankruptcy prediction. We select fnancial ratios via the Least Absolute Shrinkage Selection Operator (LASSO), establish the BN topology, and estimate model parameters. Our empirical results, based on 32,344 US firms from 1961-2018, show that the LASSO-BN model outperforms most alternative methods except the deep neural network. Crucially, the model provides a clear interpretation of its internal functionality by describing the logic of how conditional default probabilities are obtained from selected variables. Thus our model represents a major step towards interpretable machine learning models with strong performance and is relevant to investors and policymakers

    Characteristics of smokers who have never tried to quit: evidence from the British Opinions and Lifestyle Survey

    Get PDF
    Background An understanding of the characteristics of smokers who have never tried to quit may be useful to help identify and target these individuals and encourage them to attempt to give up smoking. Using national survey data we investigated variables associated with smokers reporting never having tried to quit. Methods Using data from the 2007 and 2009 UK Office for National Statistics Opinions and Lifestyle Survey we identified all self-reported current smokers aged 16+. The primary outcome was response to the question ‘have you ever tried to quit smoking?’ Univariable and multivariable logistic regression quantified the association between this outcome and several potential explanatory variables, including age, sex, socioeconomic status, health status, smoking behaviour, and knowledge of the dangers of smoking. Results Desire to quit was the most significant independent predictor of whether a smoker reported never having tried to quit. Smokers who reported that their health was good or very good were more likely to report never having tried to quit than those whose health was fair, bad or very bad (OR 1.59, 95% CI 1.05-2.41). Smokers who reported that no family members, friends or colleagues had been trying to get them to quit smoking in the last year were more likely to report never having tried to quit than those who reported that someone was trying to persuade them (OR 1.57, 95% CI 1.09-2.28). Smokers who hadn’t received any cessation advice from a health professional in the last five years which they considered to be helpful were also more likely to report never having tried to quit. Conclusions Smokers who do not want to quit, who are in good health, whose friends and family are not trying to get them to quit, and who do not report receiving helpful advice to quit from a health professional, are more likely to report never having tried to quit

    Attacks by a piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis

    Get PDF
    Plant defensive strategies bring into play blends of compounds dependent on the type of attacker and coming from different synthesis pathways. Interest in the field is mainly focused on volatile organic compounds (VOCs) and jasmonic acid (JA). By contrast, little is known about the oxidized polyunsaturated fatty acids (PUFAs), such as PUFA-hydroperoxides, PUFA-hydroxides, or PUFA-ketones. PUFA-hydroperoxides and their derivatives might be involved in stress response and show antimicrobial activities. Hydroperoxides are also precursors of JA and some volatile compounds. In this paper, the differential biochemical response of a plant against insects with distinct feeding behaviours is characterized not only in terms of VOC signature and JA profile but also in terms of their precursors synthesized through the lipoxygenase (LOX)-pathway at the early stage of the plant response. For this purpose, two leading pests of potato with distinct feeding behaviours were used: the Colorado Potato Beetle (Leptinotarsa decemlineata Say), a chewing herbivore, and the Green Peach Aphid (Myzus persicae Sulzer), a piercing-sucking insect. The volatile signatures identified clearly differ in function with the feeding behaviour of the attacker and the aphid, which causes the smaller damages, triggers the emission of a higher number of volatiles. In addition, 9-LOX products, which are usually associated with defence against pathogens, were exclusively activated by aphid attack. Furthermore, a correlation between volatiles and JA accumulation and the evolution of their precursors was determined. Finally, the role of the insect itself on the plant response after insect infestation was highlighted
    corecore