1,170 research outputs found

    C-axis Optical Sum Rule in Josephson Coupled Vortex State

    Full text link
    Observed violations of the cc-axis optical sum rule can give important information on deviations from in-plane Fermi liquid behavior and on the nature of interlayer coupling between adjacent copper oxide planes. Application of a magnetic field perpendicular to these planes is another way to probe in-plane dynamics. We find that the optical sum rule is considerably modified in the presence of the cc-axis magnetic field. Interlayer correlation of pancake vortices is involved in the sum rule modification; however, details of the vortex distribution in the plane are less important.Comment: one figure. To be published in PRB (Sep. 20001

    Magnon-Paramagnon Effective Theory of Itinerant Ferromagnets

    Full text link
    The present work is devoted to the derivation of an effective magnon-paramagnon theory starting from a microscopic lattice model of ferromagnetic metals. For some values of the microscopic parameters it reproduces the Heisenberg theory of localized spins. For small magnetization the effective model describes the physics of weak ferromagnets in accordance with the experimental results. It is written in a way which keeps O(3) symmetry manifest,and describes both the order and disordered phases of the system. Analytical expression for the Curie temperature,which takes the magnon fluctuations into account exactly, is obtained. For weak ferromagnets TcT_c is well below the Stoner's critical temperature and the critical temperature obtained within Moriya's theory.Comment: 14 pages, changed content,new result

    Spin-Wave Theory of the Spiral Phase of the t-J Model

    Full text link
    A graded H.P,realization of the SU(2|1) algebra is proposed.A spin-wave theory with a condition that the sublattice magnetization is zero is discussed.The long-range spiral phase is investigated.The spin-spin correlator is calculated.Comment: 17 page

    Electric field gradients in s-, p- and d-metal diborides and the effect of pressure on the band structure and Tc_c in MgB2_2

    Full text link
    Results of FLMTO-GGA (full-potential linear muffin-tin orbital -- generalized gradient approximation) calculations of the band structure and boron electric field gradients (EFG) for the new medium-Tc_c superconductor (MTSC), MgB2_2, and related diborides MB2_2, M=Be, Al, Sc, Ti, V, Cr, Mo and Ta are reported. The boron EFG variations are found to be related to specific features of their band structure and particularly to the M-B hybridization. The strong charge anisotropy at the B site in MgB2_2 is completely defined by the valence electrons - a property which sets MgB2_2 apart from other diborides. The boron EFG in MgB2_2 is weakly dependent of applied pressure: the B p electron anisotropy increases with pressure, but it is partly compensated by the increase of core charge assymetry. The concentration of holes in bonding σ\sigma bands is found to decrease slightly from 0.067 to 0.062 holes/B under a pressure of 10 GPa. Despite a small decrease of N(EF_F), the Hopfield parameter increases with pressure and we believe that the main reason for the reduction under pressure of the superconducting transition temperature, Tc_c, is the strong pressure dependence of phonon frequencies, which is sufficient to compensate the electronic effects.Comment: 12 pages, 3 figure

    Electronic states, Mott localization, electron-lattice coupling, and dimerization for correlated one-dimensional systems. II

    Full text link
    We discuss physical properties of strongly correlated electron states for a linear chain obtained with the help of the recently proposed new method combining the exact diagonalization in the Fock space with an ab initio readjustment of the single-particle orbitals in the correlated state. The method extends the current discussion of the correlated states since the properties are obtained with varying lattice spacing. The finite system of N atoms evolves with the increasing interatomic distance from a Fermi-liquid-like state into the Mott insulator. The criteria of the localization are discussed in detail since the results are already convergent for N>=8. During this process the Fermi-Dirac distribution gets smeared out, the effective band mass increases by ~50%, and the spin-spin correlation functions reduce to those for the Heisenberg antiferromagnet. Values of the microscopic parameters such as the hopping and the kinetic-exchange integrals, as well as the magnitude of both intra- and inter-atomic Coulomb and exchange interactions are calculated. We also determine the values of various local electron-lattice couplings and show that they are comparable to the kinetic exchange contribution in the strong-correlation limit. The magnitudes of the dimerization and the zero-point motion are also discussed. Our results provide a canonical example of a tractable strongly correlated system with a precise, first-principle description as a function of interatomic distance of a model system involving all hopping integrals, all pair-site interactions, and the exact one-band Wannier functions.Comment: 18 pages, REVTEX, submitted to Phys. Rev.

    Continuous symmetry of C60 fullerene and its derivatives

    Full text link
    Conventionally, the Ih symmetry of fullerene C60 is accepted which is supported by numerous calculations. However, this conclusion results from the consideration of the molecule electron system, of its odd electrons in particular, in a close-shell approximation without taking the electron spin into account. Passing to the open-shell approximation has lead to both the energy and the symmetry lowering up to Ci. Seemingly contradicting to a high-symmetry pattern of experimental recording, particularly concerning the molecule electronic spectra, the finding is considered in the current paper from the continuous symmetry viewpoint. Exploiting both continuous symmetry measure and continuous symmetry content, was shown that formal Ci symmetry of the molecule is by 99.99% Ih. A similar continuous symmetry analysis of the fullerene monoderivatives gives a reasonable explanation of a large variety of their optical spectra patterns within the framework of the same C1 formal symmetry exhibiting a strong stability of the C60 skeleton.Comment: 11 pages. 5 figures. 6 table

    Charge pairing, superconducting transition and supersymmetry in high-temperature cuprate superconductors

    Full text link
    We propose a model for high-Tc_{c} superconductors, valid for 0≤δ≤δSC0\leq\delta\leq\delta_{SC}, that includes both the spin fluctuations of the Cu++^{++} magnetic ions and of the O−−^{--} doped holes. Spin-charge separation is taken into account with the charge of the doped holes being associated to quantum skyrmion excitations (holons) of the Cu++^{++} spin background. The holon effective interaction potential is evaluated as a function of doping, indicating that Cooper pair formation is determined by the competition between the spin fluctuations of the Cu++^{++} background and of spins of the O−−^{--} doped holes (spinons). The superconducting transition occurs when the spinon fluctuations dominate, thereby reversing the sign of the interaction. At this point (δ=δSC\delta = \delta_{SC}), the theory is supersymmetric at short distances and, as a consequence, the leading order results are not modified by radiative corrections. The critical doping parameter for the onset of superconductivity at T=0 is obtained and found to be a universal constant determined by the shape of the Fermi surface. Our theoretical values for δSC\delta_{SC} are in good agreement with the experiment for both LSCO and YBCO.Comment: RevTex, 4 pages, no figure

    Primary care management for optimized antithrombotic treatment [PICANT]: study protocol for a cluster-randomized controlled trial

    Get PDF
    Background: Antithrombotic treatment is a continuous therapy that is often performed in general practice and requires careful safety management. The aim of this study is to investigate whether a best practice model that applies major elements of case management, including patient education, can improve antithrombotic management in primary health care in terms of reducing major thromboembolic and bleeding events. Methods: This 24-month cluster-randomized trial will be performed in 690 adult patients from 46 practices. The trial intervention will be a complex intervention involving general practitioners, health care assistants and patients with an indication for oral anticoagulation. To assess adherence to medication and symptoms in patients, as well as to detect complications early, health care assistants will be trained in case management and will use the Coagulation-Monitoring-List (Co-MoL) to regularly monitor patients. Patients will receive information (leaflets and a video), treatment monitoring via the Co-MoL and be motivated to perform self-management. Patients in the control group will continue to receive treatment-as-usual from their general practitioners. The primary endpoint is the combined endpoint of all thromboembolic events requiring hospitalization, and all major bleeding complications. Secondary endpoints are mortality, hospitalization, strokes, major bleeding and thromboembolic complications, severe treatment interactions, the number of adverse events, quality of anticoagulation, health-related quality of life and costs. Further secondary objectives will be investigated to explain the mechanism by which the intervention is effective: patients' assessment of chronic illness care, self-reported adherence to medication, general practitioners' and health care assistants' knowledge, patients' knowledge and satisfaction with shared decision making. Practice recruitment is expected to take place between July and December 2012. Recruitment of eligible patients will start in July 2012. Assessment will occur at three time points: baseline (T0), follow-up after 12 (T1) and after 24 months (T2). Discussion: The efficacy and effectiveness of individual elements of the intervention, such as antithrombotic interventions, self-management concepts in orally anticoagulated patients and the methodological tool, case-management, have already been extensively demonstrated. This project foresees the combination of several proven instruments, as a result of which we expect to profit from a reduction in the major complications associated with antithrombotic treatment

    On the fourth-order accurate compact ADI scheme for solving the unsteady Nonlinear Coupled Burgers' Equations

    Full text link
    The two-dimensional unsteady coupled Burgers' equations with moderate to severe gradients, are solved numerically using higher-order accurate finite difference schemes; namely the fourth-order accurate compact ADI scheme, and the fourth-order accurate Du Fort Frankel scheme. The question of numerical stability and convergence are presented. Comparisons are made between the present schemes in terms of accuracy and computational efficiency for solving problems with severe internal and boundary gradients. The present study shows that the fourth-order compact ADI scheme is stable and efficient
    • …
    corecore