9,498 research outputs found

    Digital Data Recording System (DDRS) operating and maintenance manual

    Get PDF
    The digital data recording system (DDRS) was designed, fabricated, tested, and delivered. This unit is the interface between the synthetic aperture radar (SAR) and the recording system. The SAR data are formatted in the DDRS for data processing on the ground

    Quantum Hall Resistance Overshoot in 2-Dimensional Electron Gases - Theory and Experiment

    Get PDF
    We present a systematical experimental investigation of an unusual transport phenomenon observed in two dimensional electron gases in Si/SiGe heterostructures under integer quantum Hall effect (IQHE) conditions. This phenomenon emerges under specific experimental conditions and in different material systems. It is commonly referred to as Hall resistance overshoot, however, lacks a consistent explanation so far. Based on our experimental findings we are able to develop a model that accounts for all of our observations in the framework of a screening theory for the IQHE. Within this model the origin of the overshoot is attributed to a transport regime where current is confined to co-existing evanescent incompressible strips of different filling factors.Comment: 26 pages, 10 figure

    Number-of-Particle Fluctuations and Stability of Bose-Condensed Systems

    Full text link
    In this paper we show that a normal total number-of-particle fluctuation can be obtained consistently from the static thermodynamic relation and dynamic compressibility sum rule. In models using the broken U(1) gauge symmetry, in order to keep the consistency between statics and dynamics, it is important to identify the equilibrium state of the system with which the density response function is calculated, so that the condensate particle number N0N_0, the number of thermal depletion particles N~\tilde{N}, and the number of non-condensate particles NncN_{nc} can be unambiguously defined. We also show that the chemical potential determined from the Hugenholtz-Pines theorem should be consistent with that determined from the equilibrium equation of state. The N4/3N^{4/3} anomalous fluctuation of the number of non-condensate particles is an intrinsic feature of the broken U(1) gauge symmetry. However, this anomalous fluctuation does not imply the instability of the system. Using the random phase approximation, which preserves the U(1) gauge symmetry, such an anomalous fluctuation of the number of non-condensate particles is completely absentComment: 9 pages, submitted to PR

    Superfluidity of bosons on a deformable lattice

    Full text link
    We study the superfluid properties of a system of interacting bosons on a lattice which, moreover, are coupled to the vibrational modes of this lattice, treated here in terms of Einstein phonon model. The ground state corresponds to two correlated condensates: that of the bosons and that of the phonons. Two competing effects determine the common collective soundwave-like mode with sound velocity vv, arising from gauge symmetry breaking: i) The sound velocity v0v_0 (corresponding to a weakly interacting Bose system on a rigid lattice) in the lowest order approximation is reduced due to reduction of the repulsive boson-boson interaction, arising from the attractive part of phonon mediated interaction in the static limit. ii) the second order correction to the sound velocity is enhanced as compared to the one of bosons on a rigid lattice when the the boson-phonon interaction is switched on due to the retarded nature of phonon mediated interaction. The overall effect is that the sound velocity is practically unaffected by the coupling with phonons, indicating the robustness of the superfluid state. The induction of a coherent state in the phonon system, driven by the condensation of the bosons could be of experimental significance, permitting spectroscopic detections of superfluid properties of the bosons. Our results are based on an extension of the Beliaev - Popov formalism for a weakly interacting Bose gas on a rigid lattice to that on a deformable lattice with which it interacts.Comment: 12 pages, 14 figures, to appear in Phys. Rev.

    Benchmark nonperturbative calculations for the electron-impact ionization of Li(2s) and Li(2p)

    Get PDF
    Three independent nonperturbative calculations are reported for the electron-impact ionization of both the ground and first excited states of the neutral lithium atom. The time-dependent close-coupling, the R matrix with pseudostates, and the converged close-coupling methods yield total integral cross sections that are in very good agreement with each other, while perturbative distorted-wave calculations yield cross sections that are substantially higher. These nonperturbative calculations provide a benchmark for the continued development of electron-atom experimental methods designed to measure both ground and excited state ionization

    Earthquakes and tsunamis caused by low-angle normal faulting in the Banda Sea, Indonesia

    Get PDF
    As the world's largest archipelagic country in Earth's most active tectonic region, Indonesia faces a substantial earthquake and tsunami threat. Understanding this threat is a challenge because of the complex tectonic environment, the paucity of observed data and the limited historical record. Here we combine information from recent studies of the geology of Indonesia's Banda Sea with Global Positioning System observations of crustal motion and an analysis of historical large earthquakes and tsunamis there. We show that past destructive earthquakes were not caused by the supposed megathrust of the Banda outer arc as previously thought but are due to a vast submarine normal fault system recently discovered along the Banda inner arc. Instead of being generated by coseismic seafloor displacement, we find the tsunamis were more likely caused by earthquake-triggered submarine slumping along the fault's massive scarp, the Weber Deep. This would make the Banda detachment representative not only as a modern analogue for terranes hyper-extended by slab rollback but also for the generation of earthquakes and tsunamis by a submarine extensional fault system. Our findings suggest that low-angle normal faults in the Banda Sea generate large earthquakes, which in turn can generate tsunamis due to earthquake-triggered slumping. Low-angle normal faults in the Banda Sea have caused large earthquakes that indirectly generated tsunamis due to earthquake-triggered submarine slumping, according to an analysis of historical earthquake and tsunami events and GPS observations.Peer reviewe

    Bose-Einstein condensation in inhomogeneous Josephson arrays

    Full text link
    We show that spatial Bose-Einstein condensation of non-interacting bosons occurs in dimension d < 2 over discrete structures with inhomogeneous topology and with no need of external confining potentials. Josephson junction arrays provide a physical realization of this mechanism. The topological origin of the phenomenon may open the way to the engineering of quantum devices based on Bose-Einstein condensation. The comb array, which embodies all the relevant features of this effect, is studied in detail.Comment: 4 pages, 5 figure

    Density-functional theory of strongly correlated Fermi gases in elongated harmonic traps

    Full text link
    Two-component Fermi gases with tunable repulsive or attractive interactions inside quasi-one-dimensional (Q1D) harmonic wells may soon become the cleanest laboratory realizations of strongly correlated Luttiger and Luther-Emery liquids under confinement. We present a microscopic Kohn-Sham density-functional theory of these systems, with specific attention to a gas on the approach to a confinement-induced Feshbach resonance. The theory employs the one-dimensional Gaudin-Yang model as the reference system and transfers the appropriate Q1D ground-state correlations to the confined inhomogeneous gas {\it via} a suitable local-density approximation to the exchange and correlation energy functional. Quantitative understanding of the role of the interactions in the bulk shell structure of the axial density profile is thereby achieved. While repulsive intercomponent interactions depress the amplitude of the shell structure of the noninteracting gas, attractive interactions stabilize atomic-density waves through spin pairing. These should be clearly observable in atomic clouds containing of the order of up to a hundred atoms.Comment: 13 pages, 9 figures, submitte
    • …
    corecore