115 research outputs found

    An interleukin-1 polymorphism additionally intensified by atopy as prognostic factor for aseptic non-mechanical complications in metal knee and hip arthroplasty

    Get PDF
    Background: In contrast to infection or mechanical issues joint replacement failure following inflammatory adverse reactions is poorly understood. Objective: To assess the association of IL-1β polymorphisms and history of allergy with aseptic non-mechanical complications following arthroplasty. Methods: In 102 patients with aseptic non-mechanically caused symptomatic knee or hip arthroplasty (SA) and 93 patients with asymptomatic arthroplasty (AA) questionnaire-based history, patch test with at least standard series, lymphocyte transformation test (LTT) with nickel, cobalt and chromium and interleukin-1 polymorphism analysis were done. Three polymorphisms of the IL1B gene [IL-1b -3954 (rs1143634), IL-1b -511 (rs16944) and IL-1b -31 (rs1143627)] and one polymorphism of the IL1RN gene [IL1RN intron 2, variable number of tandem repeats, VNTR (rs2234663)] were assessed by PCR and gel electrophoresis. Results: We found no significant difference in smoking history and atopy but 25% versus 10% of self-reported metal allergy in SA versus AA; the patch test (respective, LTT) for metal sensitivity was more often positive in SA patients. The allele 498 bp of the IL1RN polymorphism occurred significantly more often in the SA group (37% versus 11%; p < 0.0001). Upon additional presence of atopy, the difference was even greater (60% vs 10%) (p < 0.000001). There was no association of IL-1 polymorphisms with metal allergy. Conclusion: The IL1RN VNTR allele 498 bp was strongly associated with SA. In patients with a history of atopy, presence of the IL1RN VNTR allele 498 bp led to a four-fold higher SA prevalence compared to patients without this allele

    Tonic excitation or inhibition is set by GABAA conductance in hippocampal interneurons

    Get PDF
    Inhibition is a physiological process that decreases the probability of a neuron generating an action potential. The two main mechanisms that have been proposed for inhibition are hyperpolarization and shunting. Shunting results from increased membrane conductance, and it reduces the neuron-firing probability. Here we show that ambient GABA, the main inhibitory neurotransmitter in the brain, can excite adult hippocampal interneurons. In these cells, the GABAA current reversal potential is depolarizing, making baseline tonic GABAA conductance excitatory. Increasing the tonic conductance enhances shunting-mediated inhibition, which eventually overpowers the excitation. Such a biphasic change in interneuron firing leads to corresponding changes in the GABAA-mediated synaptic signalling. The described phenomenon suggests that the excitatory or inhibitory actions of the current are set not only by the reversal potential, but also by the conductance

    Thyroid Function and Body Weight: A Community-Based Longitudinal Study

    Get PDF
    OBJECTIVE: Body weight and overt thyroid dysfunction are associated. Cross-sectional population-based studies have repeatedly found that thyroid hormone levels, even within the normal reference range, might be associated with body weight. However, for longitudinal data, the association is less clear. Thus, we tested the association between serum thyrotropin (TSH) and body weight in a community-based sample of adult persons followed for 11 years. METHODS: A random sample of 4,649 persons aged 18-65 years from a general population participated in the DanThyr study in 1997-8. We included 2,102 individuals who participated at 11-year follow-up, without current or former treatment for thyroid disease and with measurements of TSH and weight at both examinations. Multiple linear regression models were used, stratified by sex and adjusted for age, smoking status, and leisure time physical activity. RESULTS: Baseline TSH concentration was not associated with change in weight (women, P = 0.17; men, P = 0.72), and baseline body mass index (BMI) was not associated with change in TSH (women, P = 0.21; men, P = 0.85). Change in serum TSH and change in weight were significantly associated in both sexes. Weight increased by 0.3 kg (95% confidence interval [CI] 0.1, 0.4, P = 0.005) in women and 0.8 kg (95% CI 0.1, 1.4, P = 0.02) in men for every one unit TSH (mU/L) increase. CONCLUSIONS: TSH levels were not a determinant of future weight changes, and BMI was not a determinant for TSH changes, but an association between weight change and TSH change was present

    Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties.

    Get PDF
    Genetic and bioinformatic analyses have identified missense mutations in GRIN2B encoding the NMDA receptor GluN2B subunit in autism, intellectual disability, Lennox Gastaut and West Syndromes. Here, we investigated several such mutations using a near-complete, hybrid 3D model of the human NMDAR and studied their consequences with kinetic modelling and electrophysiology. The mutants revealed reductions in glutamate potency; increased receptor desensitisation; and ablation of voltage-dependent Mg block. In addition, we provide new views on Mg and NMDA channel blocker binding sites. We demonstrate that these mutants have significant impact on excitatory transmission in developing neurons, revealing profound changes that could underlie their associated neurological disorders. Of note, the NMDAR channel mutant GluN2B unusually allowed Mg permeation, whereas nearby N615I reduced Ca permeability. By identifying the binding site for an NMDAR antagonist that is used in the clinic to rescue gain-of-function phenotypes, we show that drug binding may be modified by some GluN2B disease-causing mutations

    On the Origin and Spread of the Scab Disease of Apple: Out of Central Asia

    Get PDF
    Background Venturia inaequalis is an ascomycete fungus responsible for apple scab, a disease that has invaded almost all apple growing regions worldwide, with the corresponding adverse effects on apple production. Monitoring and predicting the effectiveness of intervention strategies require knowledge of the origin, introduction pathways, and population biology of pathogen populations. Analysis of the variation of genetic markers using the inferential framework of population genetics offers the potential to retrieve this information. Methodology/Principal Findings Here, we present a population genetic analysis of microsatellite variation in 1,273 strains of V. inaequalis representing 28 orchard samples from seven regions in five continents. Analysis of molecular variance revealed that most of the variation (88%) was distributed within localities, which is consistent with extensive historical migrations of the fungus among and within regions. Despite this shallow population structure, clustering analyses partitioned the data set into separate groups corresponding roughly to geography, indicating that each region hosts a distinct population of the fungus. Comparison of the levels of variability among populations, along with coalescent analyses of migration models and estimates of genetic distances, was consistent with a scenario in which the fungus emerged in Central Asia, where apple was domesticated, before its introduction into Europe and, more recently, into other continents with the expansion of apple growing. Across the novel range, levels of variability pointed to multiple introductions and all populations displayed signatures of significant post-introduction increases in population size. Most populations exhibited high genotypic diversity and random association of alleles across loci, indicating recombination both in native and introduced areas. Conclusions/Significance Venturia inaequalis is a model of invasive phytopathogenic fungus that has now reached the ultimate stage of the invasion process with a broad geographic distribution and well-established populations displaying high genetic variability, regular sexual reproduction, and demographic expansion.Contexte Venturia inaequalis est un champignon ascomycete responsable de la tavelure du pommier, une maladie qui a envahi presque toutes les régions du monde où le pommier est cultivé posant ainsi de graves problèmes en production. Prévenir et enrayer efficacement la réussite d’un tel succès invasif nécessite des connaissances approfondies sur l’origine, les voies d’introduction, la biologie et la génétique de ces populations invasives. En utilisant le potentiel d’inférence de la génétique des populations, l’analyse de la variation de marqueurs génétiques offre la possibilité d’accéder à ces informations. Méthodologie et Principaux résultats Ici nous présentons l’analyse de données microsatellites obtenues pour 1273 souches de V. inaequalis provenant de 28 vergers prélevées dans 7 régions sur les 5 continents. L’analyse de la variance moléculaire révèle que 88% de la variation se retrouve dans les vergers échantillonnés, ce qui est compatible avec d’importantes migrations historiques du champignon entre et à l’intérieur même des régions. Malgré cette très faible structuration des populations, les différentes analyses de clustering mettent en évidence un partage des populations en groupes séparés correspondant à leur origine géographique, montrant ainsi que chaque région héberge une population distincte du champignon. Ensemble, les résultats obtenus sur la comparaison du niveau de variabilité entre populations, les analyses de coalescence et les modèles de migration testés plaident en faveur d’un scénario dans lequel le champignon aurait émergé d’Asie Centrale, où le pommier a été domestiqué, avant d’être introduit en Europe puis plus récemment dans les autres continents suite à l’expansion de la culture du pommier. Les niveaux de variabilité indiquent que ces territoires ont subi des introductions multiples et que les populations portent toutes des signatures révélant de fortes expansions démographiques après leur introduction. Enfin, la forte diversité génotypique des populations et l’association aléatoire des allèles entre loci suggèrent que le champignon présente une reproduction sexuée régulière à la fois dans les régions où il a été introduit et dans sa région native. Conclusion et Portée. Venturia inaequalis est un modèle de champignons phytopathogène invasif qui a maintenant atteint le stade ultime du processus invasif, c’est à dire une très large distribution géographique par des populations bien établies montrant une grande diversité génétique, une reproduction sexuée régulière et une histoire d’expansion démographique

    Quantifying Water-Mediated Protein–Ligand Interactions in a Glutamate Receptor: A DFT Study

    Get PDF
    It is becoming increasingly clear that careful treatment of water molecules in ligand–protein interactions is required in many cases if the correct binding pose is to be identified in molecular docking. Water can form complex bridging networks and can play a critical role in dictating the binding mode of ligands. A particularly striking example of this can be found in the ionotropic glutamate receptors. Despite possessing similar chemical moieties, crystal structures of glutamate and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) in complex with the ligand-binding core of the GluA2 ionotropic glutamate receptor revealed, contrary to all expectation, two distinct modes of binding. The difference appears to be related to the position of water molecules within the binding pocket. However, it is unclear exactly what governs the preference for water molecules to occupy a particular site in any one binding mode. In this work we use density functional theory (DFT) calculations to investigate the interaction energies and polarization effects of the various components of the binding pocket. Our results show (i) the energetics of a key water molecule are more favorable for the site found in the glutamate-bound mode compared to the alternative site observed in the AMPA-bound mode, (ii) polarization effects are important for glutamate but less so for AMPA, (iii) ligand–system interaction energies alone can predict the correct binding mode for glutamate, but for AMPA alternative modes of binding have similar interaction energies, and (iv) the internal energy is a significant factor for AMPA but not for glutamate. We discuss the results within the broader context of rational drug-design

    A Kinetic Model of Dopamine- and Calcium-Dependent Striatal Synaptic Plasticity

    Get PDF
    Corticostriatal synapse plasticity of medium spiny neurons is regulated by glutamate input from the cortex and dopamine input from the substantia nigra. While cortical stimulation alone results in long-term depression (LTD), the combination with dopamine switches LTD to long-term potentiation (LTP), which is known as dopamine-dependent plasticity. LTP is also induced by cortical stimulation in magnesium-free solution, which leads to massive calcium influx through NMDA-type receptors and is regarded as calcium-dependent plasticity. Signaling cascades in the corticostriatal spines are currently under investigation. However, because of the existence of multiple excitatory and inhibitory pathways with loops, the mechanisms regulating the two types of plasticity remain poorly understood. A signaling pathway model of spines that express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP32), as well as AMPA receptor trafficking in the post-synaptic membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity. Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA), protein phosphatase 2A (PP2A), and the phosphorylation site at threonine 75 of DARPP-32 (Thr75) served as the major switch for inducing LTD and LTP. Calcium input modulated this loop through the PP2B (phosphatase 2B)-CK1 (casein kinase 1)-Cdk5 (cyclin-dependent kinase 5)-Thr75 pathway and PP2A, whereas calcium and dopamine input activated the loop via PKA activation by cyclic AMP (cAMP). The positive feedback loop displayed robust bi-stable responses following changes in the reaction parameters. Increased basal dopamine levels disrupted this dopamine-dependent plasticity. The present model elucidated the mechanisms involved in bidirectional regulation of corticostriatal synapses and will allow for further exploration into causes and therapies for dysfunctions such as drug addiction

    The Biochemistry, Ultrastructure, and Subunit Assembly Mechanism of AMPA Receptors

    Get PDF
    The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity

    Selective serotonin reuptake inhibitors versus placebo in patients with major depressive disorder. A systematic review with meta-analysis and Trial Sequential Analysis

    Full text link
    • …
    corecore