145 research outputs found

    The Black Hole Binary Nova Scorpii 1994 (GRO J1655-40): An improved chemical analysis

    Full text link
    The chemical analysis of secondary stars of low mass X-ray binaries provides an opportunity to study the formation processes of compact objects, either black holes or neutron stars. Following the discovery of overabundances of α\alpha-elements in the HIRES/Keck spectrum of the secondary star of Nova Scorpii 1994 (Israelian et al. 1999), we obtained UVES/VLT high-resolution spectroscopy with the aim of performing a detailed abundance analysis of this secondary star. Using a χ2\chi2-minimization procedure and a grid of synthetic spectra, we derive the stellar parameters and atmospheric abundances of O, Mg, Al, Ca, Ti, Fe and Ni, using a new UVES spectrum and the HIRES spectrum.The abundances of Al, Ca, Ti, Fe and Ni seem to be consistent with solar values, whereas Na, and especially O, Mg, Si and S are significantly enhanced in comparison with Galactic trends of these elements. A comparison with spherically and non-spherically symmetric supernova explosion models may provide stringent constraints to the model parameters as mass-cut and the explosion energy, in particular from the relative abundances of Si, S, Ca, Ti, Fe and Ni. Most probably the black hole in this system formed in a hypernova explosion of a 30--35 \Msun progenitor star with a mass-cut in the range 2--3.5 \Msun. However, these models produce abundances of Al and Na almost ten times higher than the observed values.Comment: New Accepted version for publication in Astronomy and Astrophysics Table 2: Correcte

    Searching for the signatures of terrestial planets in solar analogs

    Full text link
    We present a fully differential chemical abundance analysis using very high-resolution (R >~ 85,000) and very high signal-to-noise (S/N~800 on average) HARPS and UVES spectra of 7 solar twins and 95 solar analogs, 24 are planet hosts and 71 are stars without detected planets. The whole sample of solar analogs provide very accurate Galactic chemical evolution trends in the metalliciy range -0.3<[Fe/H]<0.5. Solar twins with and without planets show similar mean abundance ratios. We have also analysed a sub-sample of 28 solar analogs, 14 planet hosts and 14 stars without known planets, with spectra at S/N~850 on average, in the metallicity range 0.14<[Fe/H]<0.36 and find the same abundance pattern for both samples of stars with and without planets. This result does not depend on either the planet mass, from 7 Earth masses to 17.4 Jupiter masses, or the orbital period of the planets, from 3 to 4300 days. In addition, we have derived the slope of the abundance ratios as a function of the condensation temperature for each star and again find similar distributions of the slopes for both stars with and without planets. In particular, the peaks of these two distributions are placed at a similar value but with opposite sign as that expected from a possible signature of terrestial planets. In particular, two of the planetary systems in this sample, containing each of them a Super-Earth like planet, show slope values very close to these peaks which may suggest that these abundance patterns are not related to the presence of terrestial planets.Comment: Accepted for publication in The Astrophysical Journa

    Chemical abundances of stars with brown-dwarf companions

    Full text link
    It is well-known that stars with giant planets are on average more metal-rich than stars without giant planets, whereas stars with detected low-mass planets do not need to be metal-rich. With the aim of studying the weak boundary that separates giant planets and brown dwarfs (BDs) and their formation mechanism, we analyze the spectra of a sample of stars with already confirmed BD companions both by radial velocity and astrometry. We employ standard and automatic tools to perform an EW-based analysis and to derive chemical abundances from CORALIE spectra of stars with BD companions. We compare these abundances with those of stars without detected planets and with low-mass and giant-mass planets. We find that stars with BDs do not have metallicities and chemical abundances similar to those of giant-planet hosts but they resemble the composition of stars with low-mass planets. The distribution of mean abundances of α\alpha-elements and iron peak elements of stars with BDs exhibit a peak at about solar abundance whereas for stars with low-mass and high-mass planets the [Xα_\alpha/H] and [XFe_{\rm Fe}/H] peak abundances remain at 0.1\sim -0.1~dex and +0.15\sim +0.15~dex, respectively. We display these element abundances for stars with low-mass and high-mass planets, and BDs versus the minimum mass, mCsinim_C \sin i, of the most-massive substellar companion in each system, and we find a maximum in α\alpha-element as well as Fe-peak abundances at mCsini1.35±0.20m_C \sin i \sim 1.35\pm 0.20 jupiter masses. We discuss the implication of these results in the context of the formation scenario of BDs in comparison with that of giant planets.Comment: Accepted for publication in Astronomy & Astrophysic

    Light elements in stars with exoplanets

    Full text link
    It is well known that stars orbited by giant planets have higher abundances of heavy elements when compared with average field dwarfs. A number of studies have also addressed the possibility that light element abundances are different in these stars. In this paper we will review the present status of these studies. The most significant trends will be discussed.Comment: 10 pages, 6 figures. Submitted to the proceedings of IAU symposium 268: Light elements in the universe

    Solar analogs with and without planets: Tc_c trends and galactic evolution

    Full text link
    We explore a sample of 148 solar-like stars to search for a possible correlation between the slopes of the abundance trends versus condensation temperature (known as the Tc slope) both with stellar parameters and Galactic orbital parameters in order to understand the nature of the peculiar chemical signatures of these stars and the possible connection with planet formation. We find that the Tc slope correlates at a significant level with the stellar age and the stellar surface gravity. We also find tentative evidence that the Tc slope correlates with the mean galactocentric distance of the stars (Rmean), suggesting that stars that originated in the inner Galaxy have fewer refractory elements relative to the volatile ones. We found that the chemical peculiarities (small refractory-to-volatile ratio) of planet-hosting stars is probably a reflection of their older age and their inner Galaxy origin. We conclude that the stellar age and probably Galactic birth place are key to establish the abundances of some specific elements.Comment: Proceedings of the GREAT-ITN conference: The Milky Way Unravelled by Gaia. Will be published in the "EAS Publications Series

    Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program II: Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu

    Full text link
    To understand the formation and evolution of the different stellar populations within our Galaxy it is essential to combine detailed kinematical and chemical information for large samples of stars. We derive chemical abundances of Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu for a large sample of more than 1000 FGK dwarf stars with high-resolution (RR \sim\,115000) and high-quality spectra from the HARPS-GTO program. The abundances are derived by a standard Local Thermodinamyc Equilibrium (LTE) analysis using measured Equivalent Widths (EWs) injected to the code MOOG and a grid of Kurucz ATLAS9 atmospheres. We find that thick disk stars are chemically disjunct for Zn and Eu and also show on average higher Zr but lower Ba and Y when compared to the thin disk stars. We also discovered that the previously identified high-α\alpha metal-rich population is also enhanced in Cu, Zn, Nd and Eu with respect to the thin disk but presents Ba and Y abundances lower on average, following the trend of thick disk stars towards higher metallities and further supporting the different chemical composition of this population. The ratio of heavy-s to light-s elements of thin disk stars presents the expected behaviour (increasing towards lower metallicities) and can be explained by a major contribution of low-mass AGB stars for s-process production at disk metallicities. However, the opposite trend found for thick disk stars suggests that intermediate-mass AGB stars played an important role in the enrichment of the gas from where these stars formed. Previous works in the literature also point to a possible primary production of light-s elements at low metallicities to explain this trend. Finally, we also find an enhancement of light-s elements in the thin disk at super solar metallicities which could be caused by the contribution of metal-rich AGB stars. (short version)Comment: 20 pages, 19 figures, accepted by A&

    Searching for the signatures of terrestrial planets in F-, G-type main-sequence stars

    Full text link
    We have studied the volatile-to-refractory abundance ratios to investigate their possible relation with the low-mass planetary formation. We present a fully differential chemical abundance analysis using high-quality HARPS and UVES spectra of 61 late F- and early G-type main-sequence stars, 29 are planet hosts and 32 are stars without detected planets. As the previous sample of solar analogs, these stars slightly hotter than the Sun also provide very accurate Galactic chemical abundance trends in the metallicity range 0.3<[Fe/H]<0.4-0.3<{\rm [Fe/H]}<0.4. Stars with and without planets show similar mean abundance ratios. Moreover, when removing the Galactic chemical evolution effects, these mean abundance ratios, Δ[X/Fe]SUNSTARS\Delta {\rm [X/Fe]_{SUN-STARS}}, versus condensation temperature tend to exhibit less steep trends with nearly null or slightly negative slopes. We have also analyzed a sub-sample of 26 metal-rich stars, 13 with and 13 without known planets and find the similar, although not equal, abundance pattern with negative slopes for both samples of stars with and without planets. Using stars at S/N 550\ge 550 provides equally steep abundance trends with negative slopes for both stars with and without planets. We revisit the sample of solar analogs to study the abundance patterns of these stars, in particular, 8 stars hosting super-Earth-like planets. Among these stars having very low-mass planets, only four of them reveal clear increasing abundance trends versus condensation temperature. Finally, we have compared these observed slopes with those predicted using a simple model which enables us to compute the mass of rocks which have formed terrestrial planets in each planetary system. We do not find any evidence supporting the conclusion that the volatile-to-refractory abundance ratio is related to the presence of rocky planets.Comment: Accepted for publication in A&

    CNO behaviour in planet-harbouring stars. II. Carbon abundances in stars with and without planets using the CH band

    Full text link
    Context. Carbon, oxygen and nitrogen (CNO) are key elements in stellar formation and evolution, and their abundances should also have a significant impact on planetary formation and evolution. Aims. We present a detailed spectroscopic analysis of 1110 solar-type stars, 143 of which are known to have planetary companions. We have determined the carbon abundances of these stars and investigate a possible connection between C and the presence of planetary companions. Methods. We used the HARPS spectrograph to obtain high-resolution optical spectra of our targets. Spectral synthesis of the CH band at 4300\AA was performed with the spectral synthesis codes MOOG and FITTING. Results. We have studied carbon in several reliable spectral windows and have obtained abundances and distributions that show that planet host stars are carbon rich when compared to single stars, a signature caused by the known metal-rich nature of stars with planets. We find no different behaviour when separating the stars by the mass of the planetary companion. Conclusions. We conclude that reliable carbon abundances can be derived for solar-type stars from the CH band at 4300\AA. We confirm two different slope trends for [C/Fe] with [Fe/H] because the behaviour is opposite for stars above and below solar values. We observe a flat distribution of the [C/Fe] ratio for all planetary masses, a finding that apparently excludes any clear connection between the [C/Fe] abundance ratio and planetary mass.Comment: 10 pages, 10 figures. Accepted to A&
    corecore