20 research outputs found

    Photoinduced IR absorption in (La(1-x)Sr(x)Mn)(1-\delta)O3: changes of the anti-Jahn-Teller polaron binding energy with doping

    Full text link
    Photoinduced IR absorption was measured in (La(1-x)Sr(x)Mn)(1-\delta)O3. A midinfrared peak centered at ~ 5000 cm1^{-1} was observed in the x=0 antiferromagnetic sample. The peak diminishes and softens as hole doping is increased. The origin of the photoinduced absorption peak is atributted to the photon assisted hopping of anti-Jahn-Teller polarons formed by photoexcited charge carriers, whose binding energy decreases with increasing hole doping. The shape of the peak indicates that the polarons are small.Comment: 5 pages, 3 figures, submitted to PR

    2021 roadmap on lithium sulfur batteries

    Get PDF
    Abstract: Batteries that extend performance beyond the intrinsic limits of Li-ion batteries are among the most important developments required to continue the revolution promised by electrochemical devices. Of these next-generation batteries, lithium sulfur (Li–S) chemistry is among the most commercially mature, with cells offering a substantial increase in gravimetric energy density, reduced costs and improved safety prospects. However, there remain outstanding issues to advance the commercial prospects of the technology and benefit from the economies of scale felt by Li-ion cells, including improving both the rate performance and longevity of cells. To address these challenges, the Faraday Institution, the UK’s independent institute for electrochemical energy storage science and technology, launched the Lithium Sulfur Technology Accelerator (LiSTAR) programme in October 2019. This Roadmap, authored by researchers and partners of the LiSTAR programme, is intended to highlight the outstanding issues that must be addressed and provide an insight into the pathways towards solving them adopted by the LiSTAR consortium. In compiling this Roadmap we hope to aid the development of the wider Li–S research community, providing a guide for academia, industry, government and funding agencies in this important and rapidly developing research space

    The INHANCE consortium : Toward a better understanding of the causes and mechanisms of head and neck cancer

    No full text
    The International Head and Neck Cancer Epidemiology (INHANCE) consortium is a collaboration of research groups leading large epidemiology studies to improve the understanding of the causes and mechanisms of head and neck cancer. The consortium includes investigators of 35 studies who have pooled their data on 25\ua0500 patients with head and neck cancer (i.e., cancers of the oral cavity, oropharynx, hypopharynx, and larynx) and 37\ua0100 controls. The INHANCE analyses have confirmed that tobacco use and alcohol intake are key risk factors of these diseases and have provided precise estimates of risk and dose response, the benefit of quitting, and the hazard of smoking even a few cigarettes per day. Other risk factors include short height, lean body mass, low education and income, and a family history of head and neck cancer. Risk factors are generally similar for oral cavity, pharynx, and larynx, although the magnitude of risk may vary. Some major strengths of pooling data across studies include more precise estimates of risk and the ability to control for potentially confounding factors and to examine factors that may interact with each other. The INHANCE consortium provides evidence of the scientific productivity and discoveries that can be obtained from data pooling projects
    corecore