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Abstract

Cancers of the upper aerodigestive tract (UADT) include
malignant tumors of the oral cavity, pharynx, larynx, and
esophagus and account for 6.4% of all new cancers in Europe.
In the context of a multicenter case-control study conducted
in 14 centers within 10 European countries and comprising
1,511 cases and 1,457 controls (ARCAGE study), 115 single
nucleotide polymorphisms (SNP) from 62 a priori–selected
genes were studied in relation to UADT cancer. We found 11
SNPs that were statistically associated with UADT cancers
overall (5.75 expected). Considering the possibility of false-
positive results, we focused on SNPs in CYP2A6, MDM2, tumor
necrosis factor (TNF), and gene amplified in squamous cell
carcinoma 1 (GASC1), for which low P values for trend (P
trend < 0.01) were observed in the main effects analyses of
UADT cancer overall or by subsite. The rare variant of CYP2A6
�47A>C (rs28399433), a phase I metabolism gene, was
associated with reduced UADT cancer risk (P trend = 0.01).
Three SNPs in the MDM2 gene, involved in cell cycle control,
were associated with UADT cancer. MDM2 IVS5+1285A>G
(rs3730536) showed a strong codominant effect (P trend =
0.007). The rare variants of two SNPs in the TNF gene were
associated with a decreased risk; for TNF IVS1+123G>A
(rs1800610), the P trend was 0.007. Variants in two SNPs of
GASC1 were found to be strongly associated with increased
UADT cancer risk ( for both, P trend = 0.008). This study is the
largest genetic epidemiologic study on UADT cancers in
Europe. Our analysis points to potentially relevant genes in
various pathways. [Cancer Res 2009;69(7):2956–65]

Introduction

Cancers of the upper aerodigestive tract (UADT) include
malignant tumors originating from the oral cavity, pharynx, larynx,
and esophagus (1). Altogether, UADT cancers account for 5.2% of
all new cancer cases worldwide and 6.4% in Europe (2, 3). Each
year, there are more than 180,000 new cases and 105,000 deaths
from cancer of the UADT in Europe; 32% of new cases occur in the
oral cavity, 19% in the pharynx, 24% in the esophagus, and 25%
in the larynx (2). Within Europe, incidence rates vary considerably,
with high rates being observed in France, Italy, Spain, and countries
in Central Europe, particularly in Hungary (2). This is thought to
be mainly because of different patterns of alcohol and tobacco
consumption and types of alcoholic beverage between European
populations.
Established etiologic factors include tobacco consumption (both

smoking and chewing) and heavy alcohol drinking (4, 5). Tobacco
and alcohol jointly account for 80% of UADT cancer (6–8), but only
a fraction of subjects exposed to these carcinogens will develop
neoplastic lesions. Alcohol- and tobacco-related cancers are of
special interest in molecular epidemiology because these exposures
are thought to interact with a variety of genetic factors (9). There
are gene polymorphisms involved in the metabolism of carcinogens
from tobacco and alcohol in DNA repair and cell cycle control that
may contribute to interindividual variation of risk. The study of
single nucleotide polymorphisms (SNP) in UADT cancer etiology
may help to identify high-risk subgroups and to better understand
the pathways leading to these cancers. A crucial point is the
appropriate selection of candidate genes and functionally relevant
polymorphisms.
Alcohol is metabolized to acetaldehyde by alcohol dehydro-

genases (ADH), whereas subsequent conversion of acetaldehyde to
acetic acid is catalyzed by aldehyde dehydrogenases (ALDH). The
major part of alcohol and aldehyde metabolism is carried out in
the liver, but metabolism by ADH, the cytochrome P450–related
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enzyme CYP2E1, and ALDH also occurs in the UADT. There is
evidence that polymorphisms in the ADH1B, ADH1C, ADH7 , and
ALDH2 genes are associated with UADT cancers (10–12).
Aromatic and heterocyclic amines, substances present in

tobacco, require metabolic activation to interact with DNA. These
major groups are metabolized by cytochrome P450–related
enzymes, with CYP1A1, CYP1A2, CYP2A6 , and CYP2D6 being some
of the most studied polymorphic genes for these enzymes. Other
polymorphisms related to tobacco metabolism may also be
relevant to UADT cancer risk. After N -acetylation, the N-
hydroxyaromatic and N-hydroxyheterocyclic amines are further
activated by N-acetyltransferase to acetoxy intermediates, which
react with DNA to form adducts. Two N-acetyltransferase genes,
NAT1 and NAT2 , are highly polymorphic. The NAT2 gene is
involved in the development of bladder and colorectal cancer (13).
Another important group of phase II enzymes is the glutathione
S-transferase family of genes, including GSTM, GSTT, and GSTP
genes. For many of these genes, several studies on UADT cancers
have been conducted in different populations, but results are very
inconsistent (14–18).
Other potentially important sources of interindividual variability

in relation to the development of cancer are DNA repair capacity
and cell cycle control. The association between different variants in
these pathways and UADT cancer has been investigated in multiple
studies, but the results are inconsistent (19–25).
Here, we present a large study of >3,000 UADT cancer cases and

controls recruited in 10 European countries that was conducted to
investigate the association of genetic polymorphisms with the
risk of these tumors. One of the major objectives of the study was
to investigate the role of genetic variation with regard to the
metabolism of alcohol and carcinogens from tobacco smoke, as well
as DNA repair in the development of UADT cancers. We present
the main effects of more than a hundred a priori–selected variants
involved in various pathways, as well as some SNPs for which we
have no prior knowledge of function. In addition, relevant stratified
analyses investigating effect modification are presented.

Materials and Methods

Study population. ARCAGE (alcohol-related cancers and genetic

susceptibility in Europe) is a multicenter case-control study conducted in
14 centers within 10 European countries: Prague (Czech Republic); Bremen

(Germany); Athens (Greece); Aviano, Padova, and Turin (Italy); Dublin

(Ireland); Oslo (Norway); Glasgow, Manchester, and Newcastle (United

Kingdom); Barcelona (Spain); Zagreb (Croatia); and Paris (France). The
IARC (Lyon, France) was responsible for the overall coordination of the

study. The study has been described in more detail previously (26).

Briefly, according to the same protocol, each center recruited a group
of newly diagnosed cases of UADT cancers (within 1 year of diagnosis),

including oral cavity, pharynx, larynx, and esophagus, and a comparable

group of hospital- or population-based controls. The subjects were recruited

between January 2002 and December 2005, except for the French center
where subjects were enrolled between 1987 and 1992. All cases were

histologically or cytologically confirmed. Controls were frequency matched

by sex, age, center, ethnicity, and referral (or residence) area to the case

group. Hospital controls were selected from a strictly defined list of
admission diagnoses by diseases unrelated to alcohol, tobacco, or dietary

practices. The proportion of controls within a specific diagnostic group did

not exceed 33%. In United Kingdom centers, control subjects were selected
by random sampling from the registered list of persons in the general

practice with which the case was registered.

The study was approved by the IARC ethics committee as well as the

local ethics committees, and each participant provided written informed

consent. Non-Caucasians were excluded from analysis because there were
only 13 of them and adjustment for ethnicity would have resulted in sparse

cells. Both cases and controls underwent a face-to-face interview on current

and previous alcohol consumption, dietary habits, tobacco consumption,

and other lifestyle factors using the same questionnaire. Overall, the average
participation rate was 82% among cases and 68% among controls. A total of

2,304 cases and 2,227 controls were included in ARCAGE, but DNA for

genotyping was available for 1,788 cases and 1,685 controls. Of the

remaining 1,058 subjects, 801 did not accept to give blood and DNA quality
was not good enough for genotyping for 257.

Selection of relevant polymorphisms. A priori , we decided to include

any SNP that satisfied at least one of the following criteria: (a) allele

frequency >5% in Caucasians, (b) a previously reported association with
lung or UADT cancer (P < 0.05), or (c) low or unknown allele frequency in

Caucasians but high allele frequency in non-Caucasians (>25%). We selected

SNPs following the third criteria due to the incompleteness of the SNP
databases at the beginning of the study. We reasoned that if a disease-

related SNP is common in non-Caucasian population, but information on

its prevalence in the Caucasian population was limited, it was still of high

enough priority to be included. An initial search was conducted at the start
of the study in 2002 to identify all genes with some preliminary data of an

association with UADT cancers or genes that may have an association based

on their supposed biological function. The review was conducted using

overviews of genetic susceptibility and cancer (27, 28) and gene expression
analysis of UADT cancer (29). In addition, a Medline search using keywords

such as ‘‘genetic,’’ ‘‘susceptibility,’’ and ‘‘cancer’’ was performed. This review

resulted in a list of 92 genes, which were considered to be the most likely
candidates in tobacco- or alcohol-related cancer susceptibility.

Before genotyping, a review of the literature about polymorphisms of the

relevant genes was carried out. The list of polymorphisms was expanded

with information from more recent literature and publicly available
databases (National Center for Biotechnology Information dbSNP,24

HGVbase,25 and SNP Consortium26). Information recorded for each

polymorphism included its exact position with respect to a reference

Genbank sequence, its nature (SNP, insertion/deletion, repeat), its known
functional effect (e.g., amino acid change), the allelic frequencies in various

human ethnic groups, and the flanking sequence. The final result was 554

SNPs from 92 genes all relevant to UADT cancers and meeting our inclusion
criteria.

In total, two to three common SNPs were selected per gene. SNPs in the

coding regions of the genes were preferred to the noncoding SNPs, as well

SNPs with some published evidence of functionality (30, 31).
These selection criteria resulted in a final group of 166 SNPs from 76

genes to be included on the ARCAGE-ARRAY. This was a compromise

between the suitable SNPs, candidate genes, and the possible volume of the

genotyping.
Genotyping. Genotyping of all subjects, using an array-based method-

ology, was conducted by the arrayed primer extension (APEX) method

(32, 33). Microarray spotting and genotyping by APEX reactions were

conducted as described (32). Signal detection and interpretation were per-
formed by Genorama imaging and analysis software (Asper Biotech Ltd.27).

Validation of ARCAGE-ARRAY. For the array validation, 125 (some of
them in duplicate) anonymous human DNA samples from the SNP500
collection (so-called Coriell samples) were genotyped for the selected 166

polymorphisms. The samples included subjects from the main ethnic

groups represented in the United States, with a subset of Centre d’Etude du

Polymorphisme Humain families. The genotype data of SNP500 collection
samples generated by bidirectional sequencing are publicly available on the

Web site.28 Markers that did not satisfy quality control criteria were

replaced with neighboring markers.

24 http://www.ncbi.nlm.nih.gov/projects/SNP
25 http://www.hgvbase.org/
26 http://snp.cshl.org
27 http://www.asperbio.com
28 http://snp500cancer.nci.nih.gov
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Data analysis. There were 1,788 cases and 1,685 controls with DNA

available. Subjects with a call rate below 90% for the 166 SNPs (that is <150

SNPs called) were excluded. This led to the inclusion of 3,044 subjects (cases
and controls) in the analysis. Some 10% of the studied subjects were

randomly selected and their DNA samples were reanalyzed for each

polymorphism to evaluate the concordance of the genotyping. SNPs with
less than 95% concordance and 95% call rates were excluded from the

analysis. This led to the exclusion of 39 SNPs.

Departure from Hardy-Weinberg equilibrium (HWE) in the controls

was tested by a m2 test using a type I error probability of a = 0.01. We
excluded SNPs with P < 0.01 (rather than P < 0.05) because of the

anticonservatism of this test, as noted by Wigginton and colleagues (34).

This resulted in the exclusion of a further 12 SNPs, leaving 115 SNPs for

data analysis.

Demographic variables and factors associated with UADT cancer,

including center, sex, age at diagnosis (in 5-y groups), smoking, and alcohol

habits, were included in the analysis. With respect to smoking, subjects
were classified as never, former, or current smokers. Cumulative tobacco

consumption was calculated as pack-years (i.e., the product of smoking

duration in years and intensity in packs per day). With respect to alcohol
drinking, subjects were classified as never drinkers and drinkers of <1, 1 to

2, 3 to 4, and z5 drink equivalents per day. The definition for one drink

equivalent was 14 g ethanol, which approximately corresponds to 150 mL

wine, 330 mL beer, and 36 mL spirits (5). Drinks per day were calculated by
summing each type of alcohol in drink-years and dividing this by the total

duration of alcohol drinking. Seventy-six subjects with missing information

on at least one of the matching and adjustment variables were excluded

from the analyses [i.e., age (7 missing), sex (1 missing), smoking habit

Table 1. Selected characteristics of 1,511 cases and 1,457 controls from 14 European centers in the ARCAGE study

Cases Controls

n % n %

Center

Prague 142 9.40 113 7.76

Bremen 161 10.66 167 11.46

Athens 183 12.11 148 10.16
Aviano 136 9.00 139 9.54

Padova 112 7.41 103 7.07

Turin 137 9.07 152 10.43
Dublin 27 1.79 12 0.82

Oslo 111 7.35 114 7.82

Glasgow 41 2.71 47 3.23

Manchester 123 8.14 149 10.23
Newcastle 80 5.29 92 6.31

Barcelona 77 5.10 78 5.35

Zagreb 46 3.04 36 2.47

Paris 135 8.93 107 7.34
Sex

Male 1,229 81.34 1,104 75.77

Female 282 18.66 353 24.23
Age (y)

<45 102 6.75 1,436 9.81

45–49 159 10.52 127 8.72

50–54 208 13.77 219 15.03
55–59 311 20.58 254 17.43

60–64 251 16.61 217 14.89

65–69 209 13.83 212 14.55

70–74 163 10.79 170 11.67
75+ 108 7.15 115 7.89

Smoking status

Never 163 10.79 484 33.22

Former 368 24.35 501 34.39
Current 980 64.86 472 32.40

Alcohol intake (average drinks/day)

Never 87 5.76 162 11.12
<1 drink per day 365 24.16 561 38.50

1–2 drinks per day 422 27.93 474 32.53

3–4 drinks per day 280 18.53 167 11.46

5+ drinks per day 357 23.63 93 6.38
Subsite

Oral cavity/oropharynx 733 48.51

Larynx/hypopharynx 591 39.11

Esophagus 185 12.24
Overlapping 2 0.13

Total 1,511 1,457
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(pack-years, 14 missing), and drinking habit (drink per day, 65 missing)].
Analyses eventually included 1,511 cases and 1,457 controls.

Unconditional logistic regression was used to calculate odds ratios (OR)

and 95% confidence intervals (95% CI) adjusted by country, sex, and age at

diagnosis (in 5-y groups) as categorical variables and cumulative tobacco
consumption (pack-years) and alcohol intake (daily number of drinks) as

continuous variables. Both genotype and allele ORs were calculated. Allele

ORs are depicted in Fig. 2. Trend test for ordered variables, notably genotypes,

were conducted by treating heterozygotes as being at intermediate risk.
A Wald test was performed to test the statistical significance of each co-

efficient (b) in the model [compared with a m2 with 1 degree of freedom (df ).

The quantile-quantile (Q-Q) plot was constructed by ranking the observed

m2 statistics with 1 df for the main analysis from smallest to largest and
plotting them against the expected values [�log(i/(L + 1))], where L is the

number of SNPs. Deviations from the line of equality (y = x) correspond to

SNPs that deviate from the null hypothesis of no association at any locus.
Analyses were stratified by country, smoking status (never, former, and

current), alcohol intake (none or light drinkers of <1 drink per day, moderate

drinkers of 1 to <3 drinks per day, and heavy drinkers of 3+ drinks per day),

and subsite (oral cavity/oropharynx, larynx/hypopharynx, and esophagus).
Forest plots were used to present the stratified results (allele ORs) for the

SNPs with a P value for trend of <0.01 overall or by subsite.

Heterogeneity among the stratified ORs was assessed by conducting a
likelihood ratio test comparing a model that included the product terms
between the genetic variant and the stratification variable and a model
without a product term. As ORs for different subsites were not mutually
independent because the controls overlap, the Q test for heterogeneity was
calculated instead of m2.

All tests were two sided, and a P value of <0.05 was considered to be

statistically significant. The statistical analyses were conducted with
Statistical Analysis System software (version 9.1; SAS Institute). Linkage

disequilibrium between variants was tested in the controls by measure of

R2 using STATA software (version 8). The false-positive report probability
(FPRP) for statistically significant observations was estimated using the

procedure recommended by Wacholder and colleagues (35).

Results

Table 1 shows the demographic characteristics of the 1,511 cases
and 1,457 controls included in the analyses. The age distribution
was comparable between cases and controls, whereas more males
were recruited among cases. The average number of subjects
recruited by each center was 108 for the cases and 104 for the
controls. As expected, the proportion of current smokers was
higher among cases than among controls, as well as the average
number of drinks per day (3.2 drinks in cases; 1.7 drinks in
controls).
Figure 1 presents the comparison between the observed and

expected distribution of the trend test statistic (m2) adjusted for
possible confounders. We observed 11 SNPs with P values for trend
test (P trend) of <0.05 against 5.75 expected under the null
hypothesis of no association at any locus. By subsite, 10 SNPs with
statistically significant P trend were found for esophageal cancer,
8 for oral cavity/oropharynx, and 4 for larynx/hypopharynx cancer.
Results on the main effects for the 115 SNPs are presented in

Tables 2 to 4, grouped by presumed gene function.
Among phase I metabolizing genes (Table 2), we found two SNPs

associated with the risk for UADT cancer. The rare variant allele of
CYP2A6 �47A>C (rs28399433) was associated with a reduced risk
for UADT cancer (P trend = 0.01), whereas the rare variant allele of
CYP2C8 intron 9 G>A (rs1934951) was found to be associated with
an increased risk of UADT (P trend = 0.02). We did not find any
significant associations among SNPs in phase II metabolizing genes
and genes coding for ADH and ALDH enzymes shown in Table 2.

Among the DNA repair genes (Table 3), two SNPs involved in
nucleotide excision repair were associated with a reduced UADT
cancer risk: ERCC1 IVS5+33A>C (rs3212961) for the homozygous
variant genotype (OR, 0.45; 95% CI, 0.23–0.90) and ERCC4 S835S
(rs1799801) for the heterozygous genotype (OR, 0.83; 95% CI, 0.70–
0.98; Table 3). For two SNPs involved in the base excision repair
gene, XRCC1 P206P (rs915927) and XRCC3 IVS5-571A>G (rs861530),
the corresponding rare alleles were associated with reduced UADT
cancer risk (P trend = 0.04 for both).
We found four significant associations between SNPs involved in

cell cycle control and UADT cancers risk (Table 4). The CDKN1A
A>G (rs2395655) variant was associated with an increased risk of
UADT particularly for the homozygous variant (OR, 1.26; 95% CI,
0.99–1.59; P trend = 0.045). Three SNPs in the MDM2 gene were
associated with UADT cancer risk. In particular, the rare allele of
MDM2 IVS5+1285A>G (rs3730536) showed a strong codominant
effect (P trend = 0.007). The three MDM2 variants were in linkage
disequilibrium among the controls (R2 range: 0.36–0.95).
As shown in Table 4, the rare alleles of two SNPs in the tumor

necrosis factor (TNF) gene, particularly the TNF IVS1+123G>A
(rs1800610) variant (P trend = 0.007), were associated with a
decreased UADT cancer risk. These two SNPs were in weak linkage
equilibrium (R2 = 0.05).
The two variants of gene amplified in squamous cell carcinoma

1 (GASC1) gene were found to be strongly associated with
increased risk of UADT cancer (P trend = 0.008 for both the SNPs;
R2 = 0.97; Table 4). Additionally, the LZTS1 G>A (rs3735836)
heterozygous variant was associated with increased UADT cancer
risk (OR, 1.40; 95% CI, 0.99–1.97; P trend = 0.036); two cases but no
controls were homozygous for the rare variant. With respect to
esophageal cancer (data not shown in Table 4), variant alleles of
deleted in esophageal cancer 1 (DEC1) and deleted in lung and
esophageal cancer 1 (DLEC1) genes were associated with a
decreased risk of this cancer [DEC1 5jUTR G>A (rs3750505):
heterozygotes OR, 0.50; 95% CI, 0.29–0.85; P trend = 0.06; DLEC1
UTR C>T (rs2073401): P trend = 0.03].
Figure 2 shows stratified results for the four SNPs for which

we found strong significant associations with UADT cancer risk
(P trend < 0.01, overall or by subsite): CYP2A6 �47A>C, MDM2
IVS5+1285A>G, TNF IVS1+123G>A, and GASC1 intron 10 G>T. Only

Figure 1. Q-Q plot for the trend statistics (Cochran-Armitage 1 df m2 trend test),
adjusted for sex, age in quinquennia, and country as categorical variables and
pack-year and alcohol intake as continuous variables.
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one SNP is presented for the GASC1 gene because the two variants
were in strong linkage disequilibrium.
As shown in Fig. 2, for CYP2A6 �47A>C (rs28399433), we

observed a strong association of the variant allele with esophageal
cancer (OR, 0.32; 95% CI, 0.16–0.64; P = 0.001) and less strong
associations with cancer of the oral cavity/oropharynx (OR, 0.76;
95% CI, 0.58–1.01; P = 0.057) and larynx/hypopharynx (OR, 0.88;
95% CI, 0.65–1.19; P = 0.41), with a significant test for heterogeneity
between the ORs by subsites (Q = 7.01; P = 0.03). The inverse
association of the A allele with UADT cancer was highly significant
among heavy drinkers (OR, 0.47; 95% CI, 0.31–0.71), with a
significant test for heterogeneity (m2 = 8.91; P = 0.01). We did not
observe significant heterogeneity in the stratified results with
respect to the MDM2 variant.
We observed a considerably stronger association of TNF

IVS1+123G>A (rs1800610; OR, 0.67; 95% CI, 0.50–0.89) with UADT
cancer among heavy drinkers than among moderate drinkers,
but the m2 for heterogeneity was not significant (P = 0.11). We
found a stronger positive association of the variant rare allele of

GASC1 intron 10 G>T (rs818912) with the risk of esophageal
cancer (OR, 1.42; 95% CI, 1.07–1.87; P = 0.011) than with risk of
oral cavity/oropharyngeal cancer (OR, 1.21; 95% CI, 1.02–1.41;
P = 0.04) or laryngeal/hypopharyngeal cancer (OR, 1.07; 95% CI,
0.89–1.28; P = 0.53).
The associations of CYP2A6 �47A>C, MDM2 IVS5+1285A>G,

TNF IVS1+123G>A, and GASC1 intron 10 G>T with UADT cancer
were likely to be true positives (FPRP V 0.2) when the prior
probability was at least 10% (FPRP: 0.125, 0.060, 0.061, and 0.067,
respectively) but not with a prior probability of 1% (FPRP: 0.611,
0.412, 0.419, and 0.441, respectively; ref. 35).

Discussion

We studied 115 SNPs involved in various pathways in relation to
UADT cancer in 1,511 cases and 1,457 controls recruited in 10
European countries.
Eleven SNPs were associated with UADT cancers, whereas 5 or 6

were expected. More statistically significant associations were

Table 2. Main effects of SNPs in carcinogen metabolism genes for upper aerodigestive cancer

Function SNP name rs number Homozygotes

common allele

Heterozygotes Homozygotes

rarer allele

P trend

Ca Co Ca Co OR (95% CI) Ca Co OR (95% CI)

ADH and ALDH ADH1B Ex9+77A>G rs17033 1,267 1,239 212 191 1.06 (0.84–1.33) 8 7 1.35 (0.46–3.94) 0.530

ADH1C IVS6-892A>G rs1662058 486 497 734 676 1.06 (0.88–1.27) 258 239 1.12 (0.88–1.42) 0.331

ADH1C T151Trs2241894 854 805 517 508 0.93 (0.79–1.11) 85 86 1.01 (0.72–1.42) 0.625
ALDH2 Ex1+82A>G rs886205 951 951 470 419 1.04 (0.87–1.24) 58 52 1.09 (0.72–1.67) 0.563

ALDH2 intron 8 G>A rs4646777 992 980 454 416 1.00 (0.84–1.19) 60 53 1.08 (0.71–1.63) 0.830

ALDH2 intron 8 G>C rs4646776 1,505 1,456 4 — — 1 — — 0.960
Phase I CYP1A1 I462F rs1048943 1,388 1,325 114 119 0.86 (0.64–1.15) 3 6 0.44 (0.10–1.99) 0.182

CYP1A1 IVS1+606T>G rs2606345 636 606 667 664 0.99 (0.83–1.17) 175 158 1.03 (0.80–1.35) 0.907

CYP1A2 IVS1-154A>C rs762551 702 682 638 603 1.03 (0.87–1.22) 140 152 0.83 (0.63–1.09) 0.445

CYP1A2 N516N rs2470890* 594 583 638 610 1.04 (0.88–1.24) 223 210 0.97 (0.76–1.24) 1.000
CYP2A6 �47A>C rs28399433 1,346 1,245 157 193 0.76 (0.59–0.97) 6 11 0.55 (0.19–1.56) 0.014
CYP2C8 intron 9 G>A rs1934951 966 998 421 364 1.16 (0.97–1.39) 64 46 1.51 (0.99–2.30) 0.021
CYP2C9 I359L rs1057910 1,297 1,254 198 183 1.07 (0.84–1.35) 7 10 0.62 (0.21–1.78) 0.888

CYP3A4 IVS10+12G>A rs2242480 1,215 1,189 276 248 1.06 (0.87–1.31) 11 15 0.62 (0.26–1.48) 0.919
EPHX1 H139R rs2234922 1,000 992 421 399 1.00 (0.84–1.19) 80 54 1.39 (0.95–2.05) 0.287

MPO I717V rs2759 1,430 1,379 77 65 1.03 (0.71–1.48) 1 1 0.24 (0.01–4.52) 0.944

Phase II COMT L136L rs4818 522 477 700 734 0.86 (0.72–1.03) 264 232 1.13 (0.90–1.43) 0.655
COMT V158M rs4680 367 356 737 732 0.90 (0.74–1.09) 393 357 0.99 (0.80–1.24) 0.967

GSTA2 exon 2 G>C rs1803684 1,310 1,273 191 165 1.12 (0.88–1.42) 7 7 1.05 (0.35–3.22) 0.394

GSTA2 UTR A>G rs2254050 662 612 633 627 0.91 (0.77–1.08) 164 187 0.79 (0.61–1.02) 0.064

GSTM3 Ex8+91G>A rs7483 752 697 607 627 0.89 (0.75–1.05) 136 123 1.03 (0.77–1.38) 0.527
GSTP1 A114V rs1138272 1,298 1,249 193 189 1.03 (0.81–1.30) 10 11 0.87 (0.35–2.16) 0.945

GSTP1 I105V rs1695 647 649 673 600 1.16 (0.98–1.37) 151 156 0.98 (0.75–1.28) 0.471

GSTT2 �21225G>C rs140190 483 469 679 691 0.93 (0.78–1.12) 309 261 1.13 (0.91–1.42) 0.405

NAT2 G286E rs1799931 1,424 1,382 77 71 1.14 (0.80–1.64) 1 1 0.45 (0.01–15.53) 0.525
NAT2 R268K rs1208 467 442 742 736 0.93 (0.78–1.11) 286 259 1.01 (0.80–1.28) 0.943

NQO1 exon 5 CT rs1131341 1,366 1,319 118 122 0.94 (0.71–1.25) 1 5 0.12 (0.01–1.14) 0.300

SOD2 �1221G>A rs2758346 382 396 774 700 1.17 (0.97–1.42) 336 339 0.98 (0.78–1.22) 0.925

SULT1A1 exon 7 AG rs1801029 718 708 645 592 1.10 (0.93–1.30) 129 138 0.93 (0.70–1.23) 0.824

NOTE: OR adjusted for sex, age in quinquennia, and country as categorical variables and pack-year and alcohol intake as continuous variables. In bold,

statistically significant results, P < 0.05.

Abbreviations: Ca, cases; Co, control.
*P value for HWE, 0.01–0.05.
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found for esophageal cancer risk than for oral cavity/oropharynx
and larynx/hypopharynx, but the possibility of false-positive
findings because of the small number of esophageal cases should
be taken into account. Considering the possibility of false-positive
results, our stratified analysis focused on four SNPs in CYP2A6,
MDM2, TNF, and GASC1 , for which low P values for trend (P trend
< 0.01) were observed in the main effects analyses overall or by
subsites. The CYP2A6 gene is responsible for the metabolic
activation of N-nitrosamines (36). A recent review by Kamataki
and colleagues (37) suggested that genetic polymorphisms of
CYP2A6 may affect cancer risk in smokers but not in nonsmokers.
In our data, we found evidence of a stronger effect in heavy
drinkers (P = 0.01). No interaction by smoking status was evident.
Tan and colleagues (38) showed that the CYP2A6 gene deletion is
associated with an increased risk of lung and esophageal cancer
but not with a reduced tendency to smoke. The CYP2A6*4 deletion
is, however, rare in European populations, with a prevalence of
between 0% and 5% (39, 40), and will have a minimal effect on the
association with other more common CYP2A6 variants. The
apparent inverse association of CYP2A6 �47A>C was also more
evident for esophageal cancer compared with the other sites. A
recent study (41) on lung cancer found a similar inverse association
of the rare variant of the �47A>C polymorphism, irrespective of
smoking status. Even in the absence of information on the CYP2A6
gene deletion, our results still support a role for this SNP.

MDM2 is a target gene of the transcription factor tumor protein
p53. Overexpression of this gene can inactivate the protein p53,

diminishing its tumor suppressor function. We have found different
MDM2 polymorphisms to be associated with either increased or
decreased UADT cancer risk. The rs1695146 and rs2701092 SNPs
are in strong linkage disequilibrium (R2 = 0.95) but less so with
rs3730536 SNP, the rare variant of which showed the strongest
inverse association. No association with UADT cancer risk was
found for P53 gene.
To our knowledge, there has been only one published report on

MDM2 polymorphisms and UADT cancer risk (25). The authors
reported that the rare variants of both the P53 72Arg>Pro and the
MDM2 309T>G polymorphisms were associated with an increased
risk of esophageal cancer with an apparent multiplicative
interaction between the two SNPs. Pine and colleagues (42)
reported that the rare variant of the MDM2 SNP at position 309 was
not strongly associated with lung cancer risk, whereas Li and
colleagues (43) found that the same variant was associated with
decreased risk of lung cancer.
We found apparent inverse associations for two polymorphisms

in the TNF gene, a proinflammatory cytokine with both procarci-
nogenic and anticarcinogenic proprieties (44). A recent study (45)
on the association between TNF and breast cancer risk concluded
that the TNF IVS1+123G>A rs1800610 SNP was not significantly
associated with breast cancer. To the best of our knowledge, there
have been no published reports on TNF IVS1+123G>A rs1800610,
TNF �1210C>T rs1799964, and UADT cancer risk.
Two variants of the GASC1 gene were found to be strongly

associated with increased risk of UADT cancer, particularly

Table 3. Main effects of SNPs in DNA repair genes for upper aerodigestive cancer

SNP name rs number Homozygotes

common allele

Heterozygotes Homozygotes

rarer allele

P trend

Ca Co Ca Co OR (95% CI) Ca Co OR (95% CI)

APEX intron 4 T>C rs3136817 826 803 537 515 1.00 (0.84–1.19) 92 94 1.02 (0.74–1.42) 0.927
ERCC1 IVS3+74C>G rs3212948 626 613 666 634 1.07 (0.90–1.27) 190 192 1.02 (0.79–1.31) 0.665

ERCC1 IVS5+33A>C rs3212961 1,091 1,061 390 356 1.07 (0.90–1.29) 17 29 0.45 (0.23–0.90) 0.729

ERCC1 N118N rs11615 rs3177700 538 532 699 632 1.14 (0.95–1.35) 215 215 1.02 (0.80–1.30) 0.554

ERCC4 R415Q rs1800067 1,253 1,228 236 209 1.07 (0.86–1.34) 13 10 1.13 (0.46–2.78) 0.496
ERCC4 S835S rs1799801 767 697 576 603 0.83 (0.70–0.98) 143 122 1.06 (0.80–1.41) 0.343

LIG3 Ex21-250C>T rs1052536 449 429 742 728 0.97 (0.81–1.16) 291 281 0.92 (0.73–1.16) 0.491

LIG3 IVS9-761A>G rs3135998 515 505 733 682 1.07 (0.89–1.27) 239 238 1.02 (0.81–1.30) 0.708

MGMT IVS2+21006C>T rs913118* 491 448 652 659 0.89 (0.74–1.06) 321 309 0.90 (0.72–1.12) 0.286
MGMT I143V rs2308321 1,164 1,098 303 320 0.83 (0.68–1.00) 33 25 1.19 (0.67–2.10) 0.210

MGMT L53L rs1803965* 1,136 1,105 337 304 1.01 (0.84–1.23) 28 34 0.74 (0.42–1.28) 0.646

OGG1 IVS3-845A>G rs3219008* 926 949 495 426 1.19 (1.00–1.41) 70 69 1.07 (0.73–1.55) 0.116
PCNA IVS2-124C>T rs25406 499 469 746 710 1.02 (0.86–1.22) 247 259 0.95 (0.75–1.20) 0.740

POLB intron 3 C>A rs3136718 1,304 1,243 176 189 0.91 (0.72–1.16) 8 11 0.70 (0.25–1.92) 0.336

POLB IVS1-89C>T rs3136717 1,182 1,146 308 279 1.07 (0.88–1.31) 10 18 0.56 (0.24–1.32) 0.928

XRCC1 intron 5 G>A rs762507 513 450 686 688 0.88 (0.73–1.05) 248 259 0.82 (0.65–1.04) 0.082
XRCC1 P206P rs915927 498 424 732 743 0.83 (0.69–0.99) 265 269 0.81 (0.64–1.02) 0.041
XRCC1 Q399R rs25487 636 600 652 672 0.94 (0.80–1.12) 190 152 1.24 (0.96–1.60) 0.351

XRCC2 IVS2-3377G>A rs3218518 468 449 698 685 1.00 (0.83–1.20) 284 282 0.98 (0.78–1.23) 0.850

XRCC3 IVS5-571A>G rs861530 696 628 638 627 0.89 (0.75–1.05) 138 157 0.77 (0.59–1.01) 0.041
XRCC9 intron 13 C>T rs587118 373 363 714 721 0.97 (0.80–1.18) 401 356 1.15 (0.92–1.43) 0.212

XRCC9 intron 2 T>G rs504082 753 728 608 588 0.98 (0.83–1.16) 132 122 0.95 (0.71–1.27) 0.743

NOTE: OR adjusted for sex, age in quinquennia, and country as categorical variables and pack-year and alcohol intake as continuous variables. In bold,
statistically significant results, P < 0.05.

*P value for HWE, 0.01–0.05.
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Table 4. Main effects of SNPs in genes from other pathways for upper aerodigestive cancer

Function SNP name rs number Homozygotes

common allele

Heterozygotes Homozygotes

rarer allele

P trend

Ca Co Ca Co OR (95% CI) Ca Co OR (95% CI)

Addiction ANKK1 E713K rs1800497 1,020 968 411 424 0.91 (0.76–1.08) 55 51 1.12 (0.73–1.71) 0.610

DRD2 Ex8+246C>T rs6276* 742 698 621 630 1.00 (0.85–1.18) 111 105 1.06 (0.78–1.46) 0.789

DRD2 P319P rs6277 482 429 725 752 0.86 (0.72–1.03) 299 268 1.05 (0.83–1.32) 0.962
Adhesion CDH1 A692A rs1801552 587 565 687 683 0.99 (0.84–1.18) 204 174 1.22 (0.95–1.57) 0.245

CDH11 type2 intron 1 G>A rs35178 652 608 661 673 0.92 (0.78–1.09) 168 163 0.88 (0.68–1.15) 0.263

CDH2 intron 8 T>C rs597591 408 382 761 735 0.97 (0.80–1.17) 338 333 0.93 (0.74–1.16) 0.505
CDH2 intron 8 T>C rs665781 424 408 749 729 0.99 (0.82–1.19) 312 306 0.98 (0.78–1.23) 0.855

CTNNB1 D780D rs2293303 1,497 1,439 6 4 1.03 (0.27–3.87) 1 — — 0.630

ITGA3 intron 23 G>A rs756847 1,212 1,175 277 265 0.98 (0.80–1.21) 14 10 1.87 (0.78–4.46) 0.679

Apoptosis TNF IVS1+123G>A rs1800610* 1,094 1,017 331 351 0.79 (0.65–0.96) 42 46 0.69 (0.43–1.11) 0.007
TNF �1210C>T rs1799964 976 884 440 481 0.84 (0.71–1.00) 71 73 0.89 (0.62–1.29) 0.089

TNFAIP2 intron 5 A>G rs2234131 610 541 682 695 0.89 (0.75–1.06) 196 182 0.98 (0.76–1.26) 0.518

TNF-a -487A>G rs3091256 = rs1800629* 1,081 1,068 386 345 1.12 (0.93–1.35) 41 42 0.91 (0.57–1.47) 0.483

TNF-a exon 4 A>C rs3093665 1,406 1,357 96 90 1.03 (0.74–1.42) 2 — — 0.659
Cell communication GJB5 UTR A>G rs2275229 602 557 655 639 0.91 (0.77–1.09) 210 217 0.85 (0.67–1.08) 0.153

Cell cycle control CDKN1A A>G rs2395655 446 473 767 719 1.15 (0.96–1.38) 284 249 1.26 (0.99–1.59) 0.045
CDKN1A p21 Ex3+70C>T rs1059234 1,281 1,222 209 217 0.85 (0.68–1.06) 12 11 1.01 (0.42–2.46) 0.210
CDKN1A p21 S31R rs1801270 1,296 1,239 189 195 0.89 (0.70–1.12) 13 9 1.34 (0.53–3.39) 0.538

CDKN1A p21 UTR T>A rs3176336 485 500 727 671 1.11 (0.93–1.33) 285 271 1.11 (0.88–1.39) 0.307

CDKN2A Ex4+83C>T rs3088440 1,310 1,229 186 205 0.83 (0.66–1.05) 12 9 1.09 (0.42–2.83) 0.199

MDM2 intron 4 G>A rs3730532 rs2701092 516 526 676 676 1.06 (0.88–1.26) 249 212 1.39 (1.09–1.77) 0.015
MDM2 intron 8 G>A rs1695146 539 536 712 689 1.06 (0.89–1.26) 246 220 1.29 (1.02–1.63) 0.053

MDM2 IVS5+1285A>G rs3730536 610 518 651 677 0.77 (0.64–0.91) 199 199 0.78 (0.61–1.00) 0.007
TP53 P72R rs1042522 811 768 565 565 0.90 (0.76–1.06) 116 110 1.01 (0.75–1.36) 0.494

WDR79 F150F rs2287498 1,280 1,212 204 220 0.84 (0.67–1.05) 12 8 1.39 (0.55–3.57) 0.270
Folate MTHFR IVS10+35A>G rs1476413 822 784 580 560 1.03 (0.87–1.21) 101 107 0.83 (0.60–1.14) 0.567

MTHFR A222V rs1801133 599 582 655 643 1.00 (0.85–1.19) 188 187 0.89 (0.69–1.15) 0.492

MTHFR Q594R rs2274976 1,386 1,327 119 121 0.97 (0.73–1.30) 3 3 1.13 (0.21–6.03) 0.893

TYMS E127D rs3786362 1,507 1,447 2 6 0.23 (0.04–1.26) — — — 0.091
Signaling LTBP1 Ala126Ala rs1065324 385 370 742 704 1.03 (0.85–1.24) 375 374 0.93 (0.75–1.16) 0.533

TGFB1 308bp 3j of STP C>T rs1800469* 632 602 697 673 1.02 (0.86–1.21) 159 146 1.15 (0.87–1.52) 0.389

TGFB1 intron T>C rs3826714 970 937 463 461 0.95 (0.80–1.13) 59 47 1.33 (0.86–2.06) 0.790
TGFB1 IVS2+114C>T rs2241716 1,457 1,404 15 18 0.90 (0.43–1.89) 4 — — 0.528

TGFBR2 intron 6 G>A rs3773649 797 778 581 562 1.00 (0.85–1.19) 123 100 1.14 (0.84–1.56) 0.545

TGFBR2 IVS1-5868A>G rs3863057 654 630 679 661 1.04 (0.88–1.23) 163 155 0.98 (0.75–1.28) 0.929

TGFBR2 IVS2-1369A>G rs891595 1,117 1,105 331 304 1.04 (0.86–1.26) 24 23 1.05 (0.55–1.97) 0.696
TGFBR2 IVS6+236C>T rs2276768 1,208 1,139 267 270 0.94 (0.76–1.15) 16 16 0.80 (0.38–1.70) 0.413

Tumor suppressor FHIT G>A rs931322* 473 451 727 740 0.97 (0.81–1.16) 285 242 1.08 (0.86–1.37) 0.625

FHIT intron 2 C>T rs994929 721 677 628 614 0.97 (0.82–1.14) 120 129 0.84 (0.62–1.13) 0.305

FHIT intron 3 G>A rs610766 422 383 721 711 0.91 (0.75–1.10) 358 344 0.92 (0.74–1.15) 0.468
FHIT intron 3 T>C rs1038516 986 930 453 467 0.95 (0.80–1.12) 58 53 1.01 (0.67–1.52) 0.665

Other DEC1 5jUTR G>A rs3750505 1,220 1,141 251 258 0.94 (0.76–1.15) 23 21 1.20 (0.64–2.26) 0.833

DEC1 intron 7 T>C rs2269701* 845 894 524 441 1.17 (0.98–1.39) 78 76 0.95 (0.66–1.36) 0.316
DEC1 UTR T>C rs1537728 634 637 669 651 1.05 (0.88–1.24) 189 156 1.27 (0.98–1.65) 0.110

DLEC1 intron 11 T>C rs2236630 621 567 621 642 0.85 (0.71–1.01) 190 196 0.90 (0.70–1.16) 0.167

DLEC1 intron 9 A>G rs2070484 925 865 496 508 0.86 (0.72–1.02) 87 75 1.07 (0.75–1.51) 0.345

DLEC1 UTR C>T rs2073401 1,338 1,249 161 200 0.75 (0.59–0.96) 9 4 3.01 (0.85–10.67) 0.125
DLEC1 UTR G>A rs2073712 792 781 531 522 0.94 (0.79–1.12) 117 96 1.16 (0.85–1.59) 0.803

ERBB2 IVS4-61C>T rs1810132 735 676 639 640 0.88 (0.74–1.04) 118 122 0.82 (0.61–1.12) 0.083

ERBB2 P1170A rs1058808 665 650 685 640 0.98 (0.83–1.16) 153 156 0.90 (0.68–1.18) 0.492

GASC1 5jUTR A>G rs913589 410 406 724 724 0.98 (0.81–1.18) 348 307 1.11 (0.89–1.39) 0.393
GASC1 intron 10 G>T rs818912 866 925 558 455 1.27 (1.07–1.50) 76 69 1.25 (0.87–1.81) 0.008
GASC1 N396D rs2296067* 863 921 558 448 1.31 (1.10–1.55) 80 76 1.19 (0.83–1.70) 0.008
IL1R1 intron 11 A>G rs3917318* 744 706 620 618 1.01 (0.86–1.19) 106 96 1.08 (0.79–1.49) 0.699
LZTS1 5jUTR G>C rs3735839* 679 674 675 603 1.04 (0.88–1.23) 157 177 0.93 (0.72–1.21) 0.867

LZTS1 G>A rs3735836 1,407 1,376 90 72 1.40 (0.99–1.97) 2 — — 0.036

(Continued on the following page)
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esophageal cancer. GASC1 is located at 9p24, a region frequently
amplified in tumor tissues of esophageal squamous cell
carcinomas (46). Yang and colleagues cloned GASC1 and showed
that GASC1 was overexpressed in cell lines. Using several
independent lines of evidence, Cloos and colleagues (47) have
shown that GASC1 and its homologues JMJD2A and JMJD2B
demethylate the repressive histone H3K9me3/me2 marks both
in vitro and in vivo . These findings indicate that histone
trimethylation is a reversible modification and may potentially
have far-reaching implications for human disease, particularly
cancer. Only one association study has been published on GASC1
variants and cancer risk, notably a genome-wide case-control
study of esophageal cancer using GeneChip Mapping 10K array
(48). In that study, the rs1340513 SNP in the GASC1 gene was
found to be associated with esophageal cancer risk. Based on
HAPMAP data, there is a strong association between this variant
and rs818912 in Europeans (R2 = 0.96).
In addition to the four SNPs described above, there was evidence

of an association (0.01 < P < 0.05 with main effects considering
both a dominant and a codominant model) of CYP2C8 intron 9
G>A rs1934951, ERCC1 IVS5+33A>C rs3212961, ERCC4 S835S
rs1799801, XRCC1 P206P rs915927, XRCC3 IVS5-571A>G rs861530,
CDKN1A A>G rs2395655, DLEC1 UTR C>T rs2073401, and LZTS1
G>A rs3735836 with UADT cancer risk. Replication of these
associations in other large studies is warranted.
Three of nine ADH and ALDH SNPs were excluded from the

analyses due to deviation from HWE or low call rates, particularly
ADH1B H48R (rs1229984), for which a recent study of about 3,800
cases and 5,200 controls found results that were strongly
significant (12).
Use of hospital controls, in all but the United Kingdom centers,

would have been considered a limitation for traditional case-
control studies. However, only controls with admission diagnoses
unrelated to diet, alcohol, or smoking were eligible to participate.
Furthermore, the main disadvantage of the case-control studies,
that is, susceptibility to bias when estimating effects of exposures
that are measured retrospectively, does not generally apply when
studying genetic effects and statistical interaction between
genotype and environmental exposures (49). In any case, the

genetic associations were generally similar for the United Kingdom
and the other centers, as well as allele frequencies. Population
stratification is unlikely to have affected our results, given that we
excluded from the analysis people who were not of European
ethnicity, and allele frequencies did not differ substantially between
countries. Genome-wide data from tobacco-related cancers within
Europe that adjust for genetic markers of ethnicity show only
limited evidence of genetic mixture within countries and little
potential for population stratification (50). Genome-wide data for
the ARCAGE study have recently become available as part of a large
initiative on f70% of participants using the Illumina 317K panel.
Adjustment by genetic markers of ethnicity shows little or no
change to results adjusted by country (data not shown).
Strengths of our study include the use of a standard protocol, the

implementation of strict criteria for control selection, the use of a
single laboratory for all DNA extraction, and the use of state-of-the-
art procedures for genetic determination, as well as detailed
assessment of lifetime tobacco and alcohol consumption. We also
included a large number of cases and controls, allowing for more
statistical power in main effect and stratified analyses (26).
This study is the largest genetic epidemiologic study on UADT

cancers with biological samples available in Europe. Our analysis
points to associations with genes in various pathways. Further
detailed characterization of these pathways and replication in
other large studies of head and neck cancer will be essential.
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Function SNP name rs number Homozygotes

common al-
lele

Heterozygotes Homozygotes

rarer allele

P trend

Ca Co Ca Co OR (95% CI) Ca Co OR (95% CI)

LZTS1 intron 3 C>T rs904000 518 512 711 688 1.03 (0.86–1.22) 259 240 1.07 (0.85–1.34) 0.586

LZTS1 intron 3 T>G rs903998 1,014 973 443 427 0.97 (0.81–1.15) 47 51 0.90 (0.58–1.41) 0.596
RAF1 intron 8 C>G rs1039244 886 886 532 477 1.17 (0.99–1.38) 76 73 1.15 (0.80–1.65) 0.089

RARB intron 1 T>C rs755661 492 452 683 670 0.88 (0.74–1.06) 283 289 0.84 (0.67–1.06) 0.112

RARB intron 4 G>A rs1286756 545 488 697 718 0.85 (0.72–1.02) 255 236 0.98 (0.77–1.24) 0.507

RNF6 exon 6 T>C rs301047 1,016 960 396 379 0.96 (0.80–1.15) 47 48 0.88 (0.56–1.38) 0.525
RNF6 intron 6 A>G rs301058 457 455 741 695 1.12 (0.94–1.34) 304 289 1.08 (0.86–1.35) 0.422

SDC1 intron 2 G>A rs1106111 606 577 705 688 0.99 (0.84–1.17) 191 173 1.12 (0.86–1.44) 0.546

NOTE: OR adjusted for sex, age in quinquennia, and country as categorical variables and pack-year and alcohol intake as continuous variables. In bold,
statistically significant results, P < 0.05.

*P value for HWE, 0.01–0.05.

Table 4. Main effects of SNPs in genes from other pathways for upper aerodigestive cancer (Cont’d)

Function SNP name rs number Homozygotes

common allele

Heterozygotes Homozygotes

rarer allele

P trend

Ca Co Ca Co OR (95% CI) Ca Co OR (95% CI)
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Figure 2. Forest plot of the CYP2A6 �47A>C (rs28399433), MDM2 IVS5+1285A>G (rs3730536), TNF IVS1+123G>A (rs1800610), and GASC1 N396D (rs2296067)
SNPs: OR and 95% CIs comparing rare with common allele; OR adjusted for sex, age in quinquennia, and country as categorical variables and pack-year and
alcohol intake as continuous variables, where appropriate.
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