5,799 research outputs found
Exponential torsion growth for random 3-manifolds
We show that a random 3-manifold with positive first Betti number admits a tower of cyclic covers with exponential torsion growth
Comparative examination and validation of ELISA test systems for Salmonella diagnosis of slaughtering pigs
Infections with Salmonella enterica are one of the most important sources of human gastroenteritis. The consumption of contaminated pork products was found to be assoc1ated with 20% of human salmonellosis in Germany, whereas S. Typhimurium, especially phagetype DT 104, is the most frequently isolated Salmonella serotype from pork (Steinbach and Kroell, 1999)
Stable gene replacement in barley by targeted double-strand break induction
Gene targeting is becoming an important tool for precision genome engineering in plants. During gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. We have analysed gene targeting in barley (Hordeum vulgare) using a model system based on double-strand break (DSB) induction by the meganuclease I-SceI and a transgenic, artificial target locus. In the plants we obtained, the donor construct was inserted at the target locus by homology-directed DNA integration in at least two transformants obtained in a single experiment and was stably inherited as a single Mendelian trait. Both events were produced by one-sided integration. Our data suggest that gene replacement can be achieved in barley with a frequency suitable for routine application. The use of a codon-optimized nuclease and co-transfer of the nuclease gene together with the donor construct are probably the components important for efficient gene targeting. Such an approach, employing the recently developed synthetic nucleases/nickases that allow DSB induction at almost any sequence of a genome of interest, sets the stage for precision genome engineering as a routine tool even for important crops such as barley
Hydrodynamic object recognition using pressure sensing
Hydrodynamic sensing is instrumental to fish and some amphibians. It also represents, for underwater vehicles, an alternative way of sensing the fluid environment when visual and acoustic sensing are limited. To assess the effectiveness of hydrodynamic sensing and gain insight into its capabilities and limitations, we investigated the forward and inverse problem of detection and identification, using the hydrodynamic pressure in the neighbourhood, of a stationary obstacle described using a general shape representation. Based on conformal mapping and a general normalization procedure, our obstacle representation accounts for all specific features of progressive perceptual hydrodynamic imaging reported experimentally. Size, location and shape are encoded separately. The shape representation rests upon an asymptotic series which embodies the progressive character of hydrodynamic imaging through pressure sensing. A dynamic filtering method is used to invert noisy nonlinear pressure signals for the shape parameters. The results highlight the dependence of the sensitivity of hydrodynamic sensing not only on the relative distance to the disturbance but also its bearing
Perspectives of family medicine physicians on the importance of adolescent preventive care: a multivariate analysis
BACKGROUND: The study objective was to identify commonalities amongst family medicine physicians who endorse annual adolescent visits.
METHODS: A nationally weighted representative on-line survey was used to explore pediatrician (Nâ=â204) and family medicine physicians (Nâ=â221) beliefs and behaviors surrounding adolescent wellness. Our primary outcome was endorsement that adolescents should receive annual preventive care visits.
RESULTS: Pediatricians were significantly more likely (pâ<â.01) to endorse annual well visits. Among family medicine physicians, bivariate comparisons were conducted between those who endorsed an annual visit (Nâ=â164) compared to those who did not (Nâ=â57) with significant predictors combined into two multivariate logistic regression models. Model 1 controlled for: patient race, proportion of 13-17 year olds in provider's practice, discussion beliefs scale and discussion behaviors with parents scale. Model 2 controlled for the same first three variables as well as discussion behaviors with adolescents scale. Model 1 showed for each discussion beliefs scale topic selected, family medicine physicians had 1.14 increased odds of endorsing annual visits (pâ<â.001) and had 1.11 greater odds of endorsing annual visits with each one-point increase in discussion behaviors with parents scale (pâ=â.51). Model 2 showed for each discussion beliefs scale topic selected, family medicine physicians had 1.15 increased odds of also endorsing the importance of annual visits (pâ<â.001).
CONCLUSIONS: Family medicine physicians that endorse annual visits are significantly more likely to affirm they hold strong beliefs about topics that should be discussed during the annual exam. They also act on these beliefs by talking to parents of teens about these topics. This group appears to focus on quality of care in thought and deed
Excitonic condensate and quasiparticle transport in electron-hole bilayer systems
Bilayer electron-hole systems undergo excitonic condensation when the
distance d between the layers is smaller than the typical distance between
particles within a layer. All excitons in this condensate have a fixed dipole
moment which points perpendicular to the layers, and therefore this condensate
of dipoles couples to external electromagnetic fields. We study the transport
properties of this dipolar condensate system based on a phenomenological model
which takes into account contributions from the condensate and quasiparticles.
We discuss, in particular, the drag and counterflow transport, in-plane
Josephson effect, and noise in the in-plane currents in the condensate state
which provides a direct measure of the superfluid collective-mode velocity.Comment: 7 pages, 3 figure
Deterministic Partial Differential Equation Model for Dose Calculation in Electron Radiotherapy
Treatment with high energy ionizing radiation is one of the main methods in
modern cancer therapy that is in clinical use. During the last decades, two
main approaches to dose calculation were used, Monte Carlo simulations and
semi-empirical models based on Fermi-Eyges theory. A third way to dose
calculation has only recently attracted attention in the medical physics
community. This approach is based on the deterministic kinetic equations of
radiative transfer. Starting from these, we derive a macroscopic partial
differential equation model for electron transport in tissue. This model
involves an angular closure in the phase space. It is exact for the
free-streaming and the isotropic regime. We solve it numerically by a newly
developed HLLC scheme based on [BerCharDub], that exactly preserves key
properties of the analytical solution on the discrete level. Several numerical
results for test cases from the medical physics literature are presented.Comment: 20 pages, 7 figure
Recent Trends in Local-Scale Marine Biodiversity Reflect Community Structure and Human Impacts
The modern biodiversity crisis reflects global extinctions and local introductions. Human activities have dramatically altered rates and scales of processes that regulate biodiversity at local scales [1-7]. Reconciling the threat of global biodiversity loss [2, 4, 6-9] with recent evidence of stability at fine spatial scales [10,11] is a major challenge and requires a nuanced approach to biodiversity change that integrates ecological understanding. With a new dataset of 471 diversity time series spanning from 1962 to 2015 from marine coastal ecosystems, we tested (1) whether biodiversity changed at local scales in recent decades, and (2) whether we can ignore ecological context (e.g., proximate human impacts, trophic level, spatial scale) and still make informative inferences regarding local change. We detected a predominant signal of increasing species richness in coastal systems since 1962 in our dataset, though net species loss was associated with localized effects of anthropogenic impacts. Our geographically extensive dataset is unlikely to be a random sample of marine coastal habitats; impacted sites (3% of our time series) were underrepresented relative to their global presence. These local-scale patterns do not contradict the prospect of accelerating global extinctions [2,4,6-9] but are consistent with local species loss in areas with direct human impacts and increases in diversity due to invasions and range expansions in lower impact areas. Attempts to detect and understand local biodiversity trends are incomplete without information on local human activities and ecological context
- âŠ