940 research outputs found

    Prior event rate ratio adjustment produced estimates consistent with randomized trial: a diabetes case study

    Get PDF
    Objectives: Electronic health records (EHR) provide a valuable resource for assessing drug side-effects, but treatments are not randomly allocated in routine care creating the potential for bias. We conduct a case study using the Prior Event Rate Ratio (PERR) Pairwise method to reduce unmeasured confounding bias in side-effect estimates for two second-line therapies for type 2 diabetes, thiazolidinediones, and sulfonylureas. Study design and settings: Primary care data were extracted from the Clinical Practice Research Datalink (n = 41,871). We utilized outcomes from the period when patients took first-line metformin to adjust for unmeasured confounding. Estimates for known side-effects and a negative control outcome were compared with the A Diabetes Outcome Progression Trial (ADOPT) trial (n = 2,545). Results: When on metformin, patients later prescribed thiazolidinediones had greater risks of edema, HR 95% CI 1.38 (1.13, 1.68) and gastrointestinal side-effects (GI) 1.47 (1.28, 1.68), suggesting the presence of unmeasured confounding. Conventional Cox regression overestimated the risk of edema on thiazolidinediones and identified a false association with GI. The PERR Pairwise estimates were consistent with ADOPT: 1.43 (1.10, 1.83) vs. 1.39 (1.04, 1.86), respectively, for edema, and 0.91 (0.79, 1.05) vs. 0.94 (0.80, 1.10) for GI. Conclusion: The PERR Pairwise approach offers potential for enhancing postmarketing surveillance of side-effects from EHRs but requires careful consideration of assumptions.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.The MASTERMIND (MRC APBI Stratification and Extreme Response Mechanism IN Diabetes) consortium is funded by the U.K Medical Research Council funded study grant number MR/N00633X/1. The funder had no role in study design, data collection, data analysis, data interpretation, or writing of the report. IQVIA provided some funding for this project.published version, accepted version (12 month embargo), submitted versio

    Type 2 Diabetes Risk Alleles Are Associated With Reduced Size at Birth

    Get PDF
    OBJECTIVE: Low birth weight is associated with an increased risk of type 2 diabetes. The mechanisms underlying this association are unknown and may represent intrauterine programming or two phenotypes of one genotype. The fetal insulin hypothesis proposes that common genetic variants that reduce insulin secretion or action may predispose to type 2 diabetes and also reduce birth weight, since insulin is a key fetal growth factor. We tested whether common genetic variants that predispose to type 2 diabetes also reduce birth weight. RESEARCH DESIGN AND METHODS: We genotyped single-nucleotide polymorphisms (SNPs) at five recently identified type 2 diabetes loci (CDKAL1, CDKN2A/B, HHEX-IDE, IGF2BP2, and SLC30A8) in 7,986 mothers and 19,200 offspring from four studies of white Europeans. We tested the association between maternal or fetal genotype at each locus and birth weight of the offspring. RESULTS: We found that type 2 diabetes risk alleles at the CDKAL1 and HHEX-IDE loci were associated with reduced birth weight when inherited by the fetus (21 g [95% CI 11-31], P = 2 x 10(-5), and 14 g [4-23], P = 0.004, lower birth weight per risk allele, respectively). The 4% of offspring carrying four risk alleles at these two loci were 80 g (95% CI 39-120) lighter at birth than the 8% carrying none (P(trend) = 5 x 10(-7)). There were no associations between birth weight and fetal genotypes at the three other loci or maternal genotypes at any locus. CONCLUSIONS: Our results are in keeping with the fetal insulin hypothesis and provide robust evidence that common disease-associated variants can alter size at birth directly through the fetal genotype

    Permanent Neonatal Diabetes and Enteric Anendocrinosis Associated With Biallelic Mutations in NEUROG3

    Get PDF
    ArtĆ­culo de publicaciĆ³n ISIOBJECTIVEā€”NEUROG3 plays a central role in the development of both pancreatic islets and enteroendocrine cells. Homozygous hypomorphic missense mutations in NEUROG3 have been recently associated with a rare form of congenital malabsorptive diarrhea secondary to enteroendocrine cell dysgenesis. Interestingly, the patients did not develop neonatal diabetes but childhood-onset diabetes. We hypothesized that null mutations in NEUROG3 might be responsible for the disease in a patient with permanent neonatal diabetes and severe congenital malabsorptive diarrhea. RESEARCH DESIGN AND METHODSā€”The single coding exon of NEUROG3 was amplified and sequenced from genomic DNA. The mutant protein isoforms were functionally characterized by measuring their ability to bind to an E-box element in the NEUROD1 promoter in vitro and to induce ectopic endocrine cell formation and cell delamination after in ovo chicken endoderm electroporation. RESULTSā€”Two different heterozygous point mutations in NEUROG3 were identified in the proband [c.82G.T (p.E28X) and c.404T.C (p.L135P)], each being inherited from an unaffected parent. Both in vitro and in vivo functional studies indicated that the mutant isoforms are biologically inactive. In keeping with this, no enteroendocrine cells were detected in intestinal biopsy samples from the patient. CONCLUSIONSā€”Severe deficiency of neurogenin 3 causes a rare novel subtype of permanent neonatal diabetes. This finding confirms the essential role of NEUROG3 in islet development and function in humans

    Low Frequency Variants in the Exons Only Encoding Isoform A of HNF1A Do Not Contribute to Susceptibility to Type 2 Diabetes

    Get PDF
    Background: There is considerable interest in the hypothesis that low frequency, intermediate penetrance variants contribute to the proportion of Type 2 Diabetes (T2D) susceptibility not attributable to the common variants uncovered through genome-wide association approaches. Genes previously implicated in monogenic and multifactorial forms of diabetes are obvious candidates in this respect. In this study, we focussed on exons 8-10 of the HNF1A gene since rare, penetrant mutations in these exons (which are only transcribed in selected HNF1A isoforms) are associated with a later age of diagnosis of Maturity onset diabetes of the young (MODY) than mutations in exons 1-7. The age of diagnosis in the subgroup of HNF1A-MODY individuals with exon 8-10 mutations overlaps with that of early multifactorial T2D, and we set out to test the hypothesis that these exons might also harbour low-frequency coding variants of intermediate penetrance that contribute to risk of multifactorial T2D. Methodology and principal findings: We performed targeted capillary resequencing of HNF1A exons 8-10 in 591 European T2D subjects enriched for genetic aetiology on the basis of an early age of diagnosis (ā‰¤ 45 years) and/or family history of T2D (ā‰„ 1 affected sibling). PCR products were sequenced and compared to the published HNF1A sequence. We identified several variants (rs735396 [IVS9-24T>C], rs1169304 [IVS8+29T>C], c.1768+44C>T [IVS9+44C>T] and rd61953349 [c.1545G>A, p.T515T] but no novel non-synonymous coding variants were detected. Conclusions and significance: We conclude that low frequency, nonsynonymous coding variants in the terminal exons of HNF1A are unlikely to contribute to T2D-susceptibility in European samples. Nevertheless, the rationale for seeking low-frequency causal variants in genes known to contain rare, penetrant mutations remains strong and should motivate efforts to screen other genes in a similar fashion

    Recruitment, augmentation and apoptosis of rat osteoclasts in 1,25-(OH)2D3 response to short-term treatment with 1,25-dihydroxyvitamin D3in vivo

    Get PDF
    Background Although much is known about the regulation of osteoclast (OC) formation and activity, little is known about OC senescence. In particular, the fate of of OC seen after 1,25-(OH)2D3 administration in vivo is unclear. There is evidence that the normal fate of OC is to undergo apoptosis (programmed cell death). We have investigated the effect of short-term application of high dose 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on OC apoptosis in an experimental rat model. Methods OC recruitment, augmentation and apoptosis was visualised and quantitated by staining histochemically for tartrate resistant acid phosphatase (TRAP), double staining for TRAP/ED1 or TRAP/DAPI, in situ DNA fragmentation end labelling and histomorphometric analysis. Results Short-term treatment with high-dose 1,25-(OH)2D3 increased the recruitment of OC precursors in the bone marrow resulting in a short-lived increase in OC numbers. This was rapidly followed by an increase in the number of apoptotic OC and their subsequent removal. The response of OC to 1,25-(OH)2D3 treatment was dose and site dependent; higher doses producing stronger, more rapid responses and the response in the tibiae being consistently stronger and more rapid than in the vertebrae. Conclusions This study demonstrates that (1) after recruitment, OC are removed from the resorption site by apoptosis (2) the combined use of TRAP and ED1 can be used to identify OC and their precursors in vivo (3) double staining for TRAP and DAPI or in situ DNA fragmentation end labelling can be used to identify apoptotic OC in vivo

    Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach

    Get PDF
    OBJECTIVE-Recent genome-wide association Studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow its to identify additional risk loci. RESEARCH DESIGN AND METHODS-We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases. RESULTS-After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top P-adj = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas. CONCLUSIONS-Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more Successful for some complex traits than others, depending on the nature of the underlying disease physiology. Diabetes 58:1463-1467, 200

    Understanding the pathogenesis of lean non-autoimmune diabetes in an African population with newly diagnosed diabetes

    Get PDF
    This is the final version. Available from Springer via the DOI in this record.ā€ÆAIMS/HYPOTHESIS: Apparent type 2 diabetes is increasingly reported in lean adult individuals in sub-Saharan Africa. However, studies undertaking robust clinical and metabolic characterisation of lean individuals with new-onset type 2 diabetes are limited in this population. This cross-sectional study aimed to perform a detailed clinical and metabolic characterisation of newly diagnosed adult patients with diabetes in Uganda, in order to compare features between lean and non-lean individuals. METHODS: Socio-demographic, clinical, biophysical and metabolic (including oral glucose tolerance test) data were collected on 568 adult patients with newly diagnosed diabetes. Participants were screened for islet autoantibodies to exclude those with autoimmune diabetes. The remaining participants (with type 2 diabetes) were then classified as lean (BMI <25Ā kg/m2) or non-lean (BMIā€‰ā‰„25Ā kg/m2), and their socio-demographic, clinical, biophysical and metabolic characteristics were compared. RESULTS: Thirty-four participants (6.4%) were excluded from analyses because they were positive for pancreatic autoantibodies, and a further 34 participants because they had incomplete data. For the remaining 500 participants, the median (IQR) age, BMI and HbA1c were 48Ā years (39-58), 27.5Ā kg/m2 (23.6-31.4) and 90 mmol/mol (61-113) (10.3% [7.7-12.5]), respectively, with a female predominance (approximately 57%). Of the 500 participants, 160 (32%) and 340 (68%) were lean and non-lean, respectively. Compared with non-lean participants, lean participants were mainly male (60.6% vs 35.3%, p<0.001) and had lower visceral adiposity level (5 [4-7] vs 11 [9-13], p<0.001) and features of the metabolic syndrome (uric acid, 246.5 [205.0-290.6] vs 289 [234-347] Ī¼mol/l, p<0.001; leptin, 660.9 [174.5-1993.1] vs 3988.0 [1336.0-6595.0] pg/ml, p<0.001). In addition, they displayed markedly reduced markers of beta cell function (oral insulinogenic index 0.8 [0.3-2.5] vs 1.6 [0.6-4.6] pmol/mmol; 120Ā min serum C-peptide 0.70 [0.33-1.36] vs 1.02 [0.60-1.66] nmol/l, p<0.001). CONCLUSIONS/INTERPRETATION: Approximately one-third of participants with incident adult-onset non-autoimmune diabetes had BMI <25Ā kg/m2. Diabetes in these lean individuals was more common in men, and predominantly associated with reduced pancreatic secretory function rather than insulin resistance. The underlying pathological mechanisms are unclear, but this is likely to have important management implications.National Institute for Health Research (NIHR)Medical Research Council (MRC)Wellcome TrustDepartment for International Developmen

    Combining Information from Common Type 2 Diabetes Risk Polymorphisms Improves Disease Prediction

    Get PDF
    BACKGROUND: A limited number of studies have assessed the risk of common diseases when combining information from several predisposing polymorphisms. In most cases, individual polymorphisms only moderately increase risk (~20%), and they are thought to be unhelpful in assessing individuals' risk clinically. The value of analyzing multiple alleles simultaneously is not well studied. This is often because, for any given disease, very few common risk alleles have been confirmed. METHODS AND FINDINGS: Three common variants (Lys23 of KCNJ11, Pro12 of PPARG, and the T allele at rs7903146 of TCF7L2) have been shown to predispose to type 2 diabetes mellitus across many large studies. Risk allele frequencies ranged from 0.30 to 0.88 in controls. To assess the combined effect of multiple susceptibility alleles, we genotyped these variants in a large case-control study (3,668 controls versus 2,409 cases). Individual allele odds ratios (ORs) ranged from 1.14 (95% confidence interval [CI], 1.05 to 1.23) to 1.48 (95% CI, 1.36 to 1.60). We found no evidence of gene-gene interaction, and the risks of multiple alleles were consistent with a multiplicative model. Each additional risk allele increased the odds of type 2 diabetes by 1.28 (95% CI, 1.21 to 1.35) times. Participants with all six risk alleles had an OR of 5.71 (95% CI, 1.15 to 28.3) compared to those with no risk alleles. The 8.1% of participants that were double-homozygous for the risk alleles at TCF7L2 and Pro12Ala had an OR of 3.16 (95% CI, 2.22 to 4.50), compared to 4.3% with no TCF7L2 risk alleles and either no or one Glu23Lys or Pro12Ala risk alleles. CONCLUSIONS: Combining information from several known common risk polymorphisms allows the identification of population subgroups with markedly differing risks of developing type 2 diabetes compared to those obtained using single polymorphisms. This approach may have a role in future preventative measures for common, polygenic diseases

    The common p.R114W <i>HNF4A </i>mutation causes a distinct clinical subtype of monogenic diabetes

    Get PDF
    HNF4A mutations cause increased birth weight, transient neonatal hypoglycaemia and maturity onset diabetes of the young (MODY). The most frequently reported HNF4A mutation is p.R114W (previously p.R127W) but functional studies have shown inconsistent results, there is lack of co-segregation in some pedigrees and an unexpectedly high frequency in public variant databases. We confirm that p.R114W is a pathogenic mutation with an odds ratio of 30.4 (95% CI: 9.79 - 125, P=2x10(-21)) for diabetes in our MODY cohort compared to controls. p.R114W heterozygotes do not have the increased birth weight of patients with other HNF4A mutations (3476g vs. 4147g, P=0.0004) and fewer patients responded to sulfonylurea treatment (48% vs. 73%, P=0.038). p.R114W has reduced penetrance; only 54% of heterozygotes developed diabetes by age 30 compared to 71% for other HNF4A mutations. We re-define p.R114W as a pathogenic mutation causing a distinct clinical subtype of HNF4A MODY with reduced penetrance, reduced sensitivity to sulfonylurea treatment and no effect on birth weight. This has implications for diabetes treatment, management of pregnancy and predictive testing of at-risk relatives. The increasing availability of large-scale sequence data is likely to reveal similar examples of rare, low-penetrance MODY mutations.</p
    • ā€¦
    corecore