649 research outputs found

    Comparing key compositional indicators in Jupiter with those in extra-solar giant planets

    Get PDF
    Spectroscopic transiting observations of the atmospheres of hot Jupiters around other stars, first with Hubble Space Telescope and then Spitzer, opened the door to compositional studies of exoplanets. The James Webb Space Telescope will provide such a profound improvement in signal-to-noise ratio that it will enable detailed analysis of molecular abundances, including but not limited to determining abundances of all the major carbon- and oxygen-bearing species in hot Jupiter atmospheres. This will allow determination of the carbon-to-oxygen ratio, an essential number for planet formation models and a motivating goal of the Juno mission currently around JupiterComment: Submitted to the Astro2020 Decadal Survey as a white paper; thematic areas "Planetary Systems" and "Star and Planet Formation

    Stability Properties of Nonhyperbolic Chaotic Attractors under Noise

    Full text link
    We study local and global stability of nonhyperbolic chaotic attractors contaminated by noise. The former is given by the maximum distance of a noisy trajectory from the noisefree attractor, while the latter is provided by the minimal escape energy necessary to leave the basin of attraction, calculated with the Hamiltonian theory of large fluctuations. We establish the important and counterintuitive result that both concepts may be opposed to each other. Even when one attractor is globally more stable than another one, it can be locally less stable. Our results are exemplified with the Holmes map, for two different sets of parameter, and with a juxtaposition of the Holmes and the Ikeda maps. Finally, the experimental relevance of these findings is pointed out.Comment: Phys.Rev. Lett., to be publishe

    Retrieving Neptune's aerosol properties from Keck OSIRIS observations. I. Dark regions

    Full text link
    We present and analyze three-dimensional data cubes of Neptune from the OSIRIS integral-field spectrograph on the 10-m Keck telescope, from July 2009. These data have a spatial resolution of 0.035"/pixel and spectral resolution of R~3800 in the H and K broad bands. We focus our analysis on regions of Neptune's atmosphere that are near-infrared dark- that is, free of discrete bright cloud features. We use a forward model coupled to a Markov chain Monte Carlo algorithm to retrieve properties of Neptune's aerosol structure and methane profile above ~4 bar in these near-infrared dark regions. Using a set of high signal-to-noise spectra in a cloud-free band from 2-12N, we find that Neptune's cloud opacity is dominated by a compact, optically thick cloud layer with a base near 3 bar and composed of low albedo, forward scattering particles, with an assumed characteristic size of ~1μ\mum. Above this cloud, we require a vertically extended haze of smaller (~0.1 μ\mum) particles, which reaches from the upper troposphere (~0.6 bar) into the stratosphere. The particles in this haze are brighter and more isotropically scattering than those in the deep cloud. When we extend our analysis to 18 cloud-free locations from 20N to 87S, we observe that the optical depth in aerosols above 0.5 bar decreases by a factor of 2-3 or more at mid- and high-southern latitudes relative to low latitudes. We also consider Neptune's methane (CH4_4) profile, and find that our retrievals indicate a strong preference for a low methane relative humidity at pressures where methane is expected to condense. Our preferred solution at most locations is for a methane relative humidity below 10% near the tropopause in addition to methane depletion down to 2.0-2.5 bar. We tentatively identify a trend of lower CH4_4 columns above 2.5 bar at mid- and high-southern latitudes over low latitudes.Comment: Published in Icarus: 15 September 201

    Spatial characterization of the magnetic field profile of a probe tip used in magnetic resonance force microscopy

    Full text link
    We have developed the experimental approach to characterize spatial distribution of the magnetic field produced by cantilever tips used in magnetic resonance force microscopy (MRFM). We performed MRFM measurements on a well characterized diphenyl-picrylhydrazyl (DPPH) film and mapped the 3D field profile produced by a Nd2Fe14B probe tip. Using our technique field profiles of arbitrarily shaped probe magnets can be imaged.Comment: 10 pages, 5 figure

    Localized ferromagnetic resonance force microscopy in permalloy-cobalt films

    Full text link
    We report Ferromagnetic Resonance Force Microscopy (FMRFM) experiments on a justaposed continuous films of permalloy and cobalt. Our studies demonstrate the capability of FMRFM to perform local spectroscopy of different ferromagnetic materials. Theoretical analysis of the uniform resonance mode near the edge of the film agrees quantitatively with experimental data. Our experiments demonstrate the micron scale lateral resolution in determining local magnetic properties in continuous ferromagnetic samples.Comment: 7 pages, 3 figure

    Ferromagnetic resonance force microscopy on a thin permalloy film

    Full text link
    Ferromagnetic Resonance Force Microscopy (FMRFM) offers a means of performing local ferromagnetic resonance. We have studied the evolution of the FMRFM force spectra in a continuous 50 nm thick permalloy film as a function of probe-film distance and performed numerical simulations of the intensity of the FMRFM probe-film interaction force, accounting for the presence of the localized strongly nonuniform magnetic field of the FMRFM probe magnet. Excellent agreement between the experimental data and the simulation results provides insight into the mechanism of FMR mode excitation in an FMRFM experiment.Comment: 9 pages, 2 figure

    Escaping from nonhyperbolic chaotic attractors

    Full text link
    We study the noise-induced escape process from chaotic attractors in nonhyperbolic systems. We provide a general mechanism of escape in the low noise limit, employing the theory of large fluctuations. Specifically, this is achieved by solving the variational equations of the auxiliary Hamiltonian system and by incorporating the initial conditions on the chaotic attractor unambiguously. Our results are exemplified with the H{\'e}non and the Ikeda map and can be implemented straightforwardly to experimental data.Comment: replaced with published versio

    A 0.8V, 7μA, rail-to-rail input/output, constant Gm operational amplifier in standard digital 0.18μm CMOS

    Get PDF
    A two-stage amplifier, operational at 0.8V and drawing 7/spl mu/A, has been integrated in a standard digital 0.18/spl mu/m CMOS process. Rail-to-rail operations at the input are enabled by complementary transistor pairs with g/sub m/ control. The efficient rail-to-rail output stage is biased in class AB. The measured DC gain of the amplifier is 75dB, and the unity-gain frequency is 870kHz with a 12pF, 100k/spl Omega/load. Both input and output stage transistors are biased in weak inversion
    • …
    corecore