16,252 research outputs found

    Femtosecond transparency in the extreme ultraviolet

    Full text link
    Electromagnetically induced transparency-like behavior in the extreme ultraviolet (XUV) is studied theoretically, including the effect of intense 800 nm laser dressing of He 2s2p (1Po) and 2p^2 (1Se) autoionizing states. We present an ab initio solution of the time-dependent Schrodinger equation (TDSE) in an LS-coupling configuration interaction basis set. The method enables a rigorous treatment of optical field ionization of these coupled autoionizing states into the N = 2 continuum in addition to N = 1. Our calculated transient absorption spectra show encouraging agreement with experiment.Comment: 25 pages, 7 figures, 1 tabl

    Student Borrowers and Education Debt Burdens

    Get PDF
    This report contains the results of a survey of Stafford Loan borrowers who were scheduled to enter repayment between September 1, 1988, and June 1, 1989. Conducted in January, 1989, the survey examines the current situation facing Stafford loan borrowers as they begin repayment of their education debt

    Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic and inflammatory microenvironment that is formed primarily by activated, myofibroblast-like, stellate cells. Although the stellate cells are thought to contribute to tumorigenesis, metastasis and drug resistance of PDAC, the signaling events involved in activation of the stellate cells are not well defined. Functioning as transcription co-factors, Yes-associated protein (YAP) and its homolog transcriptional co-activator with PDZ-binding motif (TAZ) modulate the expression of genes involved in various aspects of cellular functions, such as proliferation and mobility. Using human tissues we show that YAP and TAZ expression is restricted to the centroacinar and ductal cells of normal pancreas, but is elevated in cancer cells. In particular, YAP and TAZ are expressed at high levels in the activated stellate cells of both chronic pancreatitis and PDAC patients as well as in the islets of Langerhans in chronic pancreatitis tissues. Of note, YAP is up regulated in both acinar and ductal cells following induction of acute and chronic pancreatitis in mice. These findings indicate that YAP and TAZ may play a critical role in modulating pancreatic tissue regeneration, neoplastic transformation, and stellate cell functions in both PDAC and pancreatitis

    Simulation of near-term climate change at target sites in West and East Africa

    Get PDF
    We describe the generation of synthetic sequences of precipitation and maximum and minimum daily temperatures at two locations, in western and eastern Africa respectively. The sequences are generated at the monthly time scale and incorporate both explicitly modelled annual-to-decadal variability, based on the observational record, and long-range (i.e., climate change) trends, as inferred from an ensemble of global climate models. Annual-to-decadal variability is modelled as a first-order vector autoregressive (VAR) process, and the simulations are temporally downscaled to monthly time resolution using a nonparametric resampling scheme. The modelled sequences reproduce well the observed covariances as well as serial autocorrelation in individual variables. The simulations are intended to drive agricultural or other applications models to investigate responses to a range of plausible trends, on which are superimposed decade-scale climate fluctuations whose likelihood of occurrence can be estimated

    Normal State Nernst Effect in Electron-doped Pr2-xCexCuO4: Superconducting Fluctuations and Two-band Transport

    Full text link
    We report a systematic study of normal state Nernst effect in the electron-doped cuprates Pr2−x_{2-x}Cex_xCuO4−δ_{4-\delta} over a wide range of doping (0.05≤x≤\leq x \leq0.21) and temperature. At low temperatures, we observed a notable vortex Nernst signal above Tc_c in the underdoped films, but no such normal state vortex Nernst signal is found in the overdoped region. The superconducting fluctuations in the underdoped region are most likely incoherent phase fluctuations as found in hole-doped cuprates. At high temperatures, a large normal state Nernst signal is found at dopings from slightly underdoped to highly overdoped. Combined with normal state thermoelectric power, Hall effect and magnetoresistance measurements, the large Nernst effect is compatible with two-band model. For the highly overdoped films, the large Nernst effect is anomalous and not explainable with a simple hole-like Fermi surface seen in photoemission experiments.Comment: 9 pages, 8 figures, accepted in PR

    c-Axis longitudinal magnetoresistance of the electron-doped superconductor Pr1.85Ce0.15CuO4

    Full text link
    We report c-axis resistivity and longitudinal magnetoresistance measurements of superconducting Pr1.85Ce0.15CuO4 single crystals. In the temperature range 13K<T<32K, a negative magnetoresistance is observed at fields just above Hc2. Our studies suggest that this negative magnetoresistance is caused by superconducting fluctuations. At lower temperatures (T<13K), a different magnetoresistance behavior and a resistivity upturn are observed, whose origin is still unknown.Comment: Accepted for publication in Phys. Rev.

    Evidence for Antiferromagnetic Order in La2−x_{2-x}Cex_{x}CuO4_{4} from Angular Magnetoresistance Measurements

    Full text link
    We investigated the in-plane angular magnetoresistivity (AMR) of T′% T^{^{\prime}}-phase La2−x_{2-x}Cex_{x}CuO4_{4} (LCCO) thin films (x=0.06−0.15% x=0.06-0.15) fabricated by a pulsed laser deposition technique. The in-plane AMR with H∥ab\mathbf{H}\parallel ab shows a twofold symmetry instead of the fourfold behavior found in other electron-doped cuprates such as Pr2−x% _{2-x}Cex_{x}CuO4_{4} and Nd2−x_{2-x}Cex_{x}CuO4_{4}. The twofold AMR disappears above a certain temperature, TDT_{D}. The TD(x)T_{D}(x) is well above Tc(x)T_{c}(x) for x=0.06x=0.06 (∼110\sim 110 K), and decreases with increasing doping, until it is no longer observed above Tc(x)T_{c}(x) at x=0.15x=0.15. This twofold AMR below TD(x)T_{D}(x) is suggested to originate from an antiferromagnetic or spin density wave order.Comment: to be published in Phys. Rev. B, Vol. 80 (2009

    Ultrafast dynamics in the presence of antiferromagnetic correlations in electron-doped cuprate La2−x_{2-x}Cex_xCuO4±δ_{4\pm\delta}

    Get PDF
    We used femtosecond optical pump-probe spectroscopy to study the photoinduced change in reflectivity of thin films of the electron-doped cuprate La2−x_{2-x}Cex_xCuO4_4 (LCCO) with dopings of x==0.08 (underdoped) and x==0.11 (optimally doped). Above Tc_c, we observe fluence-dependent relaxation rates which onset at a similar temperature that transport measurements first see signatures of antiferromagnetic correlations. Upon suppressing superconductivity with a magnetic field, it is found that the fluence and temperature dependence of relaxation rates is consistent with bimolecular recombination of electrons and holes across a gap (2ΔAF\Delta_{AF}) originating from antiferromagnetic correlations which comprise the pseudogap in electron-doped cuprates. This can be used to learn about coupling between electrons and high-energy (ω>2ΔAF\omega>2\Delta_{AF}) excitations in these compounds and set limits on the timescales on which antiferromagnetic correlations are static

    Mirror Maps in Chern-Simons Gauge Theory

    Get PDF
    We describe mirror symmetry in N=2 superconformal field theories in terms of a dynamical topology changing process of the principal fiber bundle associated with a topological membrane. We show that the topological symmetries of Calabi-Yau sigma-models can be obtained from discrete geometric transformations of compact Chern-Simons gauge theory coupled to charged matter fields. We demonstrate that the appearence of magnetic monopole-instantons, which interpolate between topologically inequivalent vacua of the gauge theory, implies that the discrete symmetry group of the worldsheet theory is realized kinematically in three dimensions as the magnetic flux symmetry group. From this we construct the mirror map and show that it corresponds to the interchange of topologically non-trivial matter field and gauge degrees of freedom. We also apply the mirror transformation to the mean field theory of the quantum Hall effect. We show that it maps the Jain hierarchy into a new hierarchy of states in which the lowest composite fermions have the same filling fractions.Comment: 40 pages LaTeX, 4 postscript files, uses psfig.sty; minor textual changes, typos corrected, references adde
    • …
    corecore