2,893 research outputs found
Three-Dimensionally Embedded Graph Convolutional Network (3DGCN) for Molecule Interpretation
We present a three-dimensional graph convolutional network (3DGCN), which
predicts molecular properties and biochemical activities, based on 3D molecular
graph. In the 3DGCN, graph convolution is unified with learning operations on
the vector to handle the spatial information from molecular topology. The 3DGCN
model exhibits significantly higher performance on various tasks compared with
other deep-learning models, and has the ability of generalizing a given
conformer to targeted features regardless of its rotations in the 3D space.
More significantly, our model also can distinguish the 3D rotations of a
molecule and predict the target value, depending upon the rotation degree, in
the protein-ligand docking problem, when trained with orientation-dependent
datasets. The rotation distinguishability of 3DGCN, along with rotation
equivariance, provides a key milestone in the implementation of
three-dimensionality to the field of deep-learning chemistry that solves
challenging biochemical problems.Comment: 39 pages, 14 figures, 5 table
LoANs: Weakly Supervised Object Detection with Localizer Assessor Networks
Recently, deep neural networks have achieved remarkable performance on the
task of object detection and recognition. The reason for this success is mainly
grounded in the availability of large scale, fully annotated datasets, but the
creation of such a dataset is a complicated and costly task. In this paper, we
propose a novel method for weakly supervised object detection that simplifies
the process of gathering data for training an object detector. We train an
ensemble of two models that work together in a student-teacher fashion. Our
student (localizer) is a model that learns to localize an object, the teacher
(assessor) assesses the quality of the localization and provides feedback to
the student. The student uses this feedback to learn how to localize objects
and is thus entirely supervised by the teacher, as we are using no labels for
training the localizer. In our experiments, we show that our model is very
robust to noise and reaches competitive performance compared to a
state-of-the-art fully supervised approach. We also show the simplicity of
creating a new dataset, based on a few videos (e.g. downloaded from YouTube)
and artificially generated data.Comment: To appear in AMV18. Code, datasets and models available at
https://github.com/Bartzi/loan
HYDRA: Hybrid Deep Magnetic Resonance Fingerprinting
Purpose: Magnetic resonance fingerprinting (MRF) methods typically rely on
dictio-nary matching to map the temporal MRF signals to quantitative tissue
parameters. Such approaches suffer from inherent discretization errors, as well
as high computational complexity as the dictionary size grows. To alleviate
these issues, we propose a HYbrid Deep magnetic ResonAnce fingerprinting
approach, referred to as HYDRA.
Methods: HYDRA involves two stages: a model-based signature restoration phase
and a learning-based parameter restoration phase. Signal restoration is
implemented using low-rank based de-aliasing techniques while parameter
restoration is performed using a deep nonlocal residual convolutional neural
network. The designed network is trained on synthesized MRF data simulated with
the Bloch equations and fast imaging with steady state precession (FISP)
sequences. In test mode, it takes a temporal MRF signal as input and produces
the corresponding tissue parameters.
Results: We validated our approach on both synthetic data and anatomical data
generated from a healthy subject. The results demonstrate that, in contrast to
conventional dictionary-matching based MRF techniques, our approach
significantly improves inference speed by eliminating the time-consuming
dictionary matching operation, and alleviates discretization errors by
outputting continuous-valued parameters. We further avoid the need to store a
large dictionary, thus reducing memory requirements.
Conclusions: Our approach demonstrates advantages in terms of inference
speed, accuracy and storage requirements over competing MRF method
Class reconstruction driven adversarial domain adaptation for hyperspectral image classification
We address the problem of cross-domain classification of hyperspectral image (HSI) pairs under the notion of unsupervised domain adaptation (UDA). The UDA problem aims at classifying the test samples of a target domain by exploiting the labeled training samples from a related but different source domain. In this respect, the use of adversarial training driven domain classifiers is popular which seeks to learn a shared feature space for both the domains. However, such a formalism apparently fails to ensure the (i) discriminativeness, and (ii) non-redundancy of the learned space. In general, the feature space learned by domain classifier does not convey any meaningful insight regarding the data. On the other hand, we are interested in constraining the space which is deemed to be simultaneously discriminative and reconstructive at the class-scale. In particular, the reconstructive constraint enables the learning of category-specific meaningful feature abstractions and UDA in such a latent space is expected to better associate the domains. On the other hand, we consider an orthogonality constraint to ensure non-redundancy of the learned space. Experimental results obtained on benchmark HSI datasets (Botswana and Pavia) confirm the efficacy of the proposal approach
Scanner Invariant Representations for Diffusion MRI Harmonization
Purpose: In the present work we describe the correction of diffusion-weighted
MRI for site and scanner biases using a novel method based on invariant
representation.
Theory and Methods: Pooled imaging data from multiple sources are subject to
variation between the sources. Correcting for these biases has become very
important as imaging studies increase in size and multi-site cases become more
common. We propose learning an intermediate representation invariant to
site/protocol variables, a technique adapted from information theory-based
algorithmic fairness; by leveraging the data processing inequality, such a
representation can then be used to create an image reconstruction that is
uninformative of its original source, yet still faithful to underlying
structures. To implement this, we use a deep learning method based on
variational auto-encoders (VAE) to construct scanner invariant encodings of the
imaging data.
Results: To evaluate our method, we use training data from the 2018 MICCAI
Computational Diffusion MRI (CDMRI) Challenge Harmonization dataset. Our
proposed method shows improvements on independent test data relative to a
recently published baseline method on each subtask, mapping data from three
different scanning contexts to and from one separate target scanning context.
Conclusion: As imaging studies continue to grow, the use of pooled multi-site
imaging will similarly increase. Invariant representation presents a strong
candidate for the harmonization of these data
Variational Deep Semantic Hashing for Text Documents
As the amount of textual data has been rapidly increasing over the past
decade, efficient similarity search methods have become a crucial component of
large-scale information retrieval systems. A popular strategy is to represent
original data samples by compact binary codes through hashing. A spectrum of
machine learning methods have been utilized, but they often lack expressiveness
and flexibility in modeling to learn effective representations. The recent
advances of deep learning in a wide range of applications has demonstrated its
capability to learn robust and powerful feature representations for complex
data. Especially, deep generative models naturally combine the expressiveness
of probabilistic generative models with the high capacity of deep neural
networks, which is very suitable for text modeling. However, little work has
leveraged the recent progress in deep learning for text hashing.
In this paper, we propose a series of novel deep document generative models
for text hashing. The first proposed model is unsupervised while the second one
is supervised by utilizing document labels/tags for hashing. The third model
further considers document-specific factors that affect the generation of
words. The probabilistic generative formulation of the proposed models provides
a principled framework for model extension, uncertainty estimation, simulation,
and interpretability. Based on variational inference and reparameterization,
the proposed models can be interpreted as encoder-decoder deep neural networks
and thus they are capable of learning complex nonlinear distributed
representations of the original documents. We conduct a comprehensive set of
experiments on four public testbeds. The experimental results have demonstrated
the effectiveness of the proposed supervised learning models for text hashing.Comment: 11 pages, 4 figure
Laboratory support during and after the Ebola virus endgame: Towards a sustained laboratory infrastructure
The Ebola virus epidemic in West Africa is on the brink of entering a second phase in which the (inter)national efforts to slow down virus transmission will be engaged to end the epidemic. The response community must consider the longevity of their current laboratory support, as it is essential that diagnostic capacity in the affected countries be supported beyond the end of the epidemic. The emergency laboratory response should be used to support building structural diagnostic and outbreak surveillance capacity
Iterative Segmentation from Limited Training Data: Applications to Congenital Heart Disease
We propose a new iterative segmentation model which can be accurately learned
from a small dataset. A common approach is to train a model to directly segment
an image, requiring a large collection of manually annotated images to capture
the anatomical variability in a cohort. In contrast, we develop a segmentation
model that recursively evolves a segmentation in several steps, and implement
it as a recurrent neural network. We learn model parameters by optimizing the
interme- diate steps of the evolution in addition to the final segmentation. To
this end, we train our segmentation propagation model by presenting incom-
plete and/or inaccurate input segmentations paired with a recommended next
step. Our work aims to alleviate challenges in segmenting heart structures from
cardiac MRI for patients with congenital heart disease (CHD), which encompasses
a range of morphological deformations and topological changes. We demonstrate
the advantages of this approach on a dataset of 20 images from CHD patients,
learning a model that accurately segments individual heart chambers and great
vessels. Com- pared to direct segmentation, the iterative method yields more
accurate segmentation for patients with the most severe CHD malformations.Comment: Presented at the Deep Learning in Medical Image Analysis Workshop,
MICCAI 201
HeMIS: Hetero-Modal Image Segmentation
We introduce a deep learning image segmentation framework that is extremely
robust to missing imaging modalities. Instead of attempting to impute or
synthesize missing data, the proposed approach learns, for each modality, an
embedding of the input image into a single latent vector space for which
arithmetic operations (such as taking the mean) are well defined. Points in
that space, which are averaged over modalities available at inference time, can
then be further processed to yield the desired segmentation. As such, any
combinatorial subset of available modalities can be provided as input, without
having to learn a combinatorial number of imputation models. Evaluated on two
neurological MRI datasets (brain tumors and MS lesions), the approach yields
state-of-the-art segmentation results when provided with all modalities;
moreover, its performance degrades remarkably gracefully when modalities are
removed, significantly more so than alternative mean-filling or other synthesis
approaches.Comment: Accepted as an oral presentation at MICCAI 201
Dynamic clustering of time series with Echo State Networks
In this paper we introduce a novel methodology for unsupervised analysis of time series, based upon the iterative implementation of a clustering algorithm embedded into the evolution of a recurrent Echo State Network. The main features of the temporal data are captured by the dynamical evolution of the network states, which are then subject to a clustering procedure. We apply the proposed algorithm to time series coming from records of eye movements, called saccades, which are recorded for diagnosis of a neurodegenerative form of ataxia. This is a hard classification problem, since saccades from patients at an early stage of the disease are practically indistinguishable from those coming from healthy subjects. The unsupervised clustering algorithm implanted within the recurrent network produces more compact clusters, compared to conventional clustering of static data, and provides a source of information that could aid diagnosis and assessment of the disease.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
- …
