9 research outputs found

    ELIOS-OBJ theorem proving in a specification language

    Get PDF
    Projet EURECAIn the context of the executable specification language OBJ3 an order-sorted completion procedure is implemented, providing automatically convergent specifications from user-given ones. This feature is of first importance to ensure unambiguity and termination of the rewriting execution process. We describe here how we specified a modular completion design in terms of inference rules and control language, using OBJ3 itself. On another hand, the specific problems encountered to integrate a completion process in an already reduction-oriented environment are pointed out

    A Finite Representation of the Narrowing Space

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-14125-1_4Narrowing basically extends rewriting by allowing free variables in terms and by replacing matching with unification. As a consequence, the search space of narrowing becomes usually infinite, as in logic programming. In this paper, we introduce the use of some operators that allow one to always produce a finite data structure that still represents all the narrowing derivations. Furthermore, we extract from this data structure a novel, compact equational representation of the (possibly infinite) answers computed by narrowing for a given initial term. Both the finite data structure and the equational representation of the computed answers might be useful in a number of areas, like program comprehension, static analysis, program transformation, etc.Nishida, N.; Vidal, G. (2013). A Finite Representation of the Narrowing Space. En Logic-Based Program Synthesis and Transformation. Springer. 54-71. doi:10.1007/978-3-319-14125-1_4S5471Albert, E., Vidal, G.: The Narrowing-Driven Approach to Functional Logic Program Specialization. New Generation Computing 20(1), 3–26 (2002)Alpuente, M., Falaschi, M., Vidal, G.: Partial Evaluation of Functional Logic Programs. ACM Transactions on Programming Languages and Systems 20(4), 768–844 (1998)Alpuente, M., Falaschi, M., Vidal, G.: Compositional Analysis for Equational Horn Programs. In: Rodríguez-Artalejo, M., Levi, G. (eds.) ALP 1994. LNCS, vol. 850, pp. 77–94. Springer, Heidelberg (1994)Antoy, S., Ariola, Z.: Narrowing the Narrowing Space. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 1–15. Springer, Heidelberg (1997)Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236(1–2), 133–178 (2000)Arts, T., Zantema, H.: Termination of Logic Programs Using Semantic Unification. In: Proietti, M. (ed.) LOPSTR 1995. LNCS, vol. 1048, pp. 219–233. Springer, Heidelberg (1996)Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)Bae, K., Escobar, S., Meseguer, J.: Abstract Logical Model Checking of Infinite-State Systems Using Narrowing. In: Proceedings of the 24th International Conference on Rewriting Techniques and Applications. LIPIcs, vol. 21, pp. 81–96. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013)De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen, M.: Conjunctive partial deduction: foundations, control, algorihtms, and experiments. Journal of Logic Programming 41(2&3), 231–277 (1999)Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the NRL Protocol Analyzer and its meta-logical properties. Theoretical Computer Science 367(1–2), 162–202 (2006)Escobar, S., Meseguer, J.: Symbolic Model Checking of Infinite-State Systems Using Narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer, Heidelberg (2007)Fribourg, L.: SLOG: A Logic Programming Language Interpreter Based on Clausal Superposition and Rewriting. In: Proceedings of the Symposium on Logic Programming, pp. 172–185. IEEE Press (1985)Gnaedig, I., Kirchner, H.: Proving weak properties of rewriting. Theoretical Computer Science 412(34), 4405–4438 (2011)Hanus, M.: The integration of functions into logic programming: From theory to practice. Journal of Logic Programming 19&20, 583–628 (1994)Hanus, M. (ed.): Curry: An integrated functional logic language (vers. 0.8.3) (2012). http://www.curry-language.orgHermenegildo, M., Rossi, F.: On the Correctness and Efficiency of Independent And-Parallelism in Logic Programs. In: Lusk, E., Overbeck, R. (eds.) Proceedings of the 1989 North American Conf. on Logic Programming, pp. 369–389. The MIT Press, Cambridge (1989)Hölldobler, S. (ed.): Foundations of Equational Logic Programming. LNCS, vol. 353. Springer, Heidelberg (1989)Meseguer, J., Thati, P.: Symbolic Reachability Analysis Using Narrowing and its Application to Verification of Cryptographic Protocols. Electronic Notes in Theoretical Computer Science 117, 153–182 (2005)Middeldorp, A., Okui, S.: A Deterministic Lazy Narrowing Calculus. Journal of Symbolic Computation 25(6), 733–757 (1998)Nishida, N., Sakai, M., Sakabe, T.: Generation of Inverse Computation Programs of Constructor Term Rewriting Systems. IEICE Transactions on Information and Systems J88–D–I(8), 1171–1183 (2005) (in Japanese)Nishida, N., Sakai, M., Sakabe, T.: Partial Inversion of Constructor Term Rewriting Systems. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 264–278. Springer, Heidelberg (2005)Nishida, N., Vidal, G.: Program inversion for tail recursive functions. In: Schmidt-Schauß, M. (ed.) Proceedings of the 22nd International Conference on Rewriting Techniques and Applications. LIPIcs, vol. 10, pp. 283–298. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)Nishida, N., Vidal, G.: Computing More Specific Versions of Conditional Rewriting Systems. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 137–154. Springer, Heidelberg (2013)Nutt, W., Réty, P., Smolka, G.: Basic Narrowing Revisited. Journal of Symbolic Computation 7(3/4), 295–317 (1989)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, London, UK (2002)Palamidessi, C.: Algebraic Properties of Idempotent Substitutions. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 386–399. Springer, Heidelberg (1990)Ramos, J.G., Silva, J., Vidal, G.: Fast Narrowing-Driven Partial Evaluation for Inductively Sequential Systems. In: Danvy, O., Pierce, B.C. (eds.) Proceedings of the 10th ACM SIGPLAN International Conference on Functional Programming, pp. 228–239. ACM Press (2005)Slagle, J.R.: Automated theorem-proving for theories with simplifiers, commutativity and associativity. Journal of the ACM 21(4), 622–642 (1974

    Term Rewriting in a Logic of Special Relations

    No full text

    Modular Access Control via Strategic Rewriting

    No full text
    Security policies, in particular access control, are fundamental elements of computer security. We address the problem of authoring and analyzing policies in a modular way using techniques developed in the field of term rewriting, focusing especially on the use of rewriting strategies. Term rewriting supports a formalization of access control with a clear declarative semantics based on equational logic and an operational semantics guided by strategies. Wellestablished term rewriting techniques allow us to check properties of policies such as the absence of conflicts and the property of always returning a decision. A rich language for expressing rewriting strategies is used to define a theory of modular construction of policies in which we can better understand the preservation of properties of policies under composition. The robustness of the approach is illustrated on the composition operators of XACML

    From Search to Computation: Redundancy Criteria and Simplification at Work

    No full text
    The concept of redundancy and simplification has been an ongoing theme in Harald Ganzinger’s work from his first contributions to equational completion to the various variants of the superposition calculus. When executed by a theorem prover, the inference rules of these calculi usually generate a tremendously growing search space. The redundancy and simplification concept is indispensable for cutting down this search space to a manageable size. For a number of subclasses of firstorder logic appropriate redundancy and simplification concepts even turn the superposition calculus into a decision procedure. Hence, the key to successfully applying first-order theorem proving to a problem domain is to find those simplifications and redundancy criteria that fit this domain and can be effectively implemented. We present Harald Ganzinger’s work in the light of the simplification and redundancy techniques that have been developed for concrete problem areas. This includes a variant of contextual rewriting to decide a subclass of Euclidean geometry, ordered chaining techniques for Church-Rosser and priority queue proofs, contextual rewriting and history-dependent complexities for the completion of conditional rewrite systems, rewriting with equivalences for theorem proving in set theory, soft typing for the exploration of sort information in the context of equations, and constraint inheritance for automated complexity analysis
    corecore