33 research outputs found

    DIGITAL TRANSITION STRATEGIES AND TRAINING PROGRAMS FOR DIGITAL CURATION OF MUSEUM

    Get PDF
    Small and medium-sized museums have been particularly impacted by the COVID-19 pandemic, as they often have limited resources and staff to manage the challenges posed by the pandemic. In order for them to survive during the pandemic but also embracing the extensive use of technology in our everyday lives, museums have to adapt to this new reality. The aim of the Museum-Next project is to provide small and medium-sized museums with a new generation of specialised EU professionals working in the Cultural Heritage sector, equipped with a recognised, cross-cutting and high-level digital skillset: the Digital Curators. In the digital age, museum digital curators play a critical role in preserving, organising, and presenting museum collections online. As part of the project, our research performed a desk analysis on the state of the art on museum digital transition strategies and museum digital curator training programs already implemented at EU scale in order to map good practices and tools already existing so as to highlight the current situation and the gaps that may appear in the topic

    The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia.

    Get PDF
    Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using in vitro and in vivo genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets in vitro across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.Funding in the Huntly laboratory comes from Cancer Research UK, Leukemia Lymphoma Research, the Kay Kendal Leukemia Fund, the Leukemia lymphoma Society of America, the Wellcome Trust, The Medical Research Council and an NIHR Cambridge Biomedical Research Centre grant. Patient samples were processed in the Cambridge Blood and Stem Cell Biobank.This is the author accepted manuscript. The final version is available via NPG at http://dx.doi.org/10.1038/onc.2015.9

    Novel and rare fusion transcripts involving transcription factors and tumor suppressor genes in acute myeloid leukemia

    Get PDF
    Approximately 18% of acute myeloid leukemia (AML) cases express a fusion transcript. However, few fusions are recurrent across AML and the identification of these rare chimeras is of interest to characterize AML patients. Here, we studied the transcriptome of 8 adult AML patients with poorly described chromosomal translocation(s), with the aim of identifying novel and rare fusion transcripts. We integrated RNA-sequencing data with multiple approaches including computational analysis, Sanger sequencing, fluorescence in situ hybridization and in vitro studies to assess the oncogenic potential of the ZEB2-BCL11B chimera. We detected 7 different fusions with partner genes involving transcription factors (OAZ-MAFK, ZEB2-BCL11B), tumor suppressors (SAV1-GYPB, PUF60-TYW1, CNOT2-WT1) and rearrangements associated with the loss of NF1 (CPD-PXT1, UTP6-CRLF3). Notably, ZEB2-BCL11B rearrangements co-occurred with FLT3 mutations and were associated with a poorly differentiated or mixed phenotype leukemia. Although the fusion alone did not transform murine c-Kit+ bone marrow cells, 45.4% of 14q32 non-rearranged AML cases were also BCL11B-positive, suggesting a more general and complex mechanism of leukemogenesis associated with BCL11B expression. Overall, by combining different approaches, we described rare fusion events contributing to the complexity of AML and we linked the expression of some chimeras to genomic alterations hitting known genes in AML

    Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors.

    Get PDF
    Loss-of-function mutations of cyclic-AMP response element binding protein, binding protein (CREBBP) are prevalent in lymphoid malignancies. However, the tumour suppressor functions of CREBBP remain unclear. We demonstrate that loss of Crebbp in murine haematopoietic stem and progenitor cells (HSPCs) leads to increased development of B-cell lymphomas. This is preceded by accumulation of hyperproliferative lymphoid progenitors with a defective DNA damage response (DDR) due to a failure to acetylate p53. We identify a premalignant lymphoma stem cell population with decreased H3K27ac, which undergoes transcriptional and genetic evolution due to the altered DDR, resulting in lymphomagenesis. Importantly, when Crebbp is lost later in lymphopoiesis, cellular abnormalities are lost and tumour generation is attenuated. We also document that CREBBP mutations may occur in HSPCs from patients with CREBBP-mutated lymphoma. These data suggest that earlier loss of Crebbp is advantageous for lymphoid transformation and inform the cellular origins and subsequent evolution of lymphoid malignancies

    The late radiotherapy normal tissue injury phenotypes of telangiectasia, fibrosis and atrophy in breast cancer patients have distinct genotype-dependent causes

    Get PDF
    The relationship between late normal tissue radiation injury phenotypes in 167 breast cancer patients treated with radiotherapy and: (i) radiotherapy dose (boost); (ii) an early acute radiation reaction and (iii) genetic background was examined. Patients were genotyped at single nucleotide polymorphisms (SNPs) in eight candidate genes. An early acute reaction to radiation and/or the inheritance of the transforming growth factor-Ξ²1 (TGFΞ²1 βˆ’509T) SNP contributed to the risk of fibrosis. In contrast, an additional 15 Gy electron boost and/or the inheritance of X-ray repair cross-complementing 1 (XRCC1) (R399Q) SNP contributed to the risk of telangiectasia. Although fibrosis, telangiectasia and atrophy, all contribute to late radiation injury, the data suggest that they have distinct underlying genetic and radiobiological causes. Fibrosis risk is associated with an inflammatory response (an acute reaction and/or TGFΞ²1), whereas telangiectasia is associated with vascular endothelial cell damage (boost and/or XRCC1). Atrophy is associated with an acute response, but the genetic predisposing factors that determine the risk of an acute response or atrophy have yet to be identified. A combined analysis of two UK breast cancer patient studies shows that 8% of patients are homozygous (TT) for the TGFΞ²1 (C-509T) variant allele and have a 15-fold increased risk of fibrosis following radiotherapy (95% confidence interval: 3.76–60.3; P=0.000003) compared with (CC) homozygotes

    Genetic polymorphisms in DNA repair and damage response genes and late normal tissue complications of radiotherapy for breast cancer

    Get PDF
    Breast-conserving surgery followed by radiotherapy is effective in reducing recurrence; however, telangiectasia and fibrosis can occur as late skin side effects. As radiotherapy acts through producing DNA damage, we investigated whether genetic variation in DNA repair and damage response confers increased susceptibility to develop late normal skin complications. Breast cancer patients who received radiotherapy after breast-conserving surgery were examined for late complications of radiotherapy after a median follow-up time of 51 months. Polymorphisms in genes involved in DNA repair (APEX1, XRCC1, XRCC2, XRCC3, XPD) and damage response (TP53, P21) were determined. Associations between telangiectasia and genotypes were assessed among 409 patients, using multivariate logistic regression. A total of 131 patients presented with telangiectasia and 28 patients with fibrosis. Patients with variant TP53 genotypes either for the Arg72Pro or the PIN3 polymorphism were at increased risk of telangiectasia. The odds ratios (OR) were 1.66 (95% confidence interval (CI): 1.02–2.72) for 72Pro carriers and 1.95 (95% CI: 1.13–3.35) for PIN3 A2 allele carriers compared with non-carriers. The TP53 haplotype containing both variant alleles was associated with almost a two-fold increase in risk (OR 1.97, 95% CI: 1.11–3.52) for telangiectasia. Variants in the TP53 gene may therefore modify the risk of late skin toxicity after radiotherapy

    A Bioinformatics Filtering Strategy for Identifying Radiation Response Biomarker Candidates

    Get PDF
    The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response

    Journal of Public Procurement

    No full text
    Volume 15, Number 4, Winter 2015Public Infrastructure Procurement: A Review 0f Adversarial andNon-Adversarial Contracting Methods ....................................................... 405M. Regan, P. E.D. Love and J. SmithM. V. KidalovThe Enlightenment Underpinnings of the Public Procurement Profession.................................................................................................. 439W. E. Klay Public Procurement Reforms in Greece: The Impact of ImprovedTransparency on Government Expenditures ........................................... 458I. Giotopoulos, G. Pavlou, S. Danchev, and A. Tsakanikas The Role Of Accountability In Federal Acquisition: A Search for Context .................................................................................................... 514131 hlm,; 15 x 23 c
    corecore