86 research outputs found

    Instantons and Chern-Simons flows in 6, 7 and 8 dimensions

    Full text link
    The existence of K-instantons on a cylinder M^7 = R_tau x K/H over a homogeneous nearly K"ahler 6-manifold K/H requires a conformally parallel or a cocalibrated G_2-structure on M^7. The generalized anti-self-duality on M^7 implies a Chern-Simons flow on K/H which runs between instantons on the coset. For K-equivariant connections, the torsionful Yang-Mills equation reduces to a particular quartic dynamics for a Newtonian particle on C. When the torsion corresponds to one of the G_2-structures, this dynamics follows from a gradient or hamiltonian flow equation, respectively. We present the analytic (kink-type) solutions and plot numerical non-BPS solutions for general torsion values interpolating between the instantonic ones.Comment: 1+8 pages, 14 figures; talk presented at SQS-11 during 18-23 July, 2011, at JINR, Dubna, Russia; v2: missing * in eq.(1) adde

    Local temperature in quantum thermal states

    Get PDF
    We consider blocks of quantum spins in a chain at thermal equilibrium, focusing on their properties from a thermodynamical perspective. Whereas in classical systems the temperature behaves as an intensive magnitude, a deviation from this behavior is expected in quantum systems. In particular, we see that under some conditions the description of the blocks as thermal states with the same global temperature as the whole chain fails. We analyze this issue by employing the quantum fidelity as a figure of merit, singling out in detail the departure from the classical behavior. The influence in this sense of zero-temperature quantum phase transitions can be clearly observed within this approach. Then we show that the blocks can be considered indeed as thermal states with a high fidelity, provided an effective local temperature is properly identified. Such a result originates from typical properties of reduced sub-systems of energy-constrained Hilbert spaces. Finally, the relation between local and global temperature is analyzed as a function of the size of the blocks and the system parameters.Comment: 10 pages, 10 figures. New fidelity measure with similar result

    Robustness of Highly Entangled Multi-Qubit States Under Decoherence

    Get PDF
    We investigate the decay of entanglement, due to decoherence, of multi-qubit systems that are initially prepared in highly (in some cases maximally) entangled states. We assume that during the decoherence processes each qubit of the system interacts with its own, independent environment. We determine, for systems with a small number of qubits and for various decoherence channels, the initial states exhibiting the most robust entanglement. We also consider a restricted version of this robustness optimization problem, only involving states equivalent under local unitary transformations to the |GHZ> state.Comment: 16 pages, 3 figures. Changes in Sec.

    Dynamics and thermodynamics of linear quantum open systems

    Get PDF
    We analyze the behavior of a network of quantum oscillators coupled with a number of external environments. We show that the dynamics is such that the quantum state of the network always obeys a local master equation with a simple analytical solution. We use this to study the emergence of thermodynamical laws in the stationary regime, achieved for sufficiently long times if the environments are dissipative. We show that the validity of the second law implies the impossibility of building a quantum refrigerator without moving parts (therefore, a quantum absorption refrigerators requires non-linearity as an crucial ingredient, as recently proposed by Kosloff and others cite{Kosloff1,Kosloff2}). We also show that the third law imposes strong constraints on the low frequency behavior of the environmental spectral densities.Comment: 4 pages of main text, 6 pages of supplementary material, 1 figure; substantially modified, detailed derivations presented in the supplementary materia

    Multi-Qubit Systems: Highly Entangled States and Entanglement Distribution

    Full text link
    A comparison is made of various searching procedures, based upon different entanglement measures or entanglement indicators, for highly entangled multi-qubits states. In particular, our present results are compared with those recently reported by Brown et al. [J. Phys. A: Math. Gen. 38 (2005) 1119]. The statistical distribution of entanglement values for the aforementioned multi-qubit systems is also explored.Comment: 24 pages, 3 figure

    Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems

    Full text link
    A quantum many-body system which is prepared in the ground state of an integrable Hamiltonian does not directly thermalize after a sudden small parameter quench away from integrability. Rather, it will be trapped in a prethermalized state and can thermalize only at a later stage. We discuss several examples for which this prethermalized state shares some properties with the nonthermal steady state that emerges in the corresponding integrable system. These examples support the notion that nonthermal steady states in integrable systems may be viewed as prethermalized states that never decay further. Furthermore we show that prethermalization plateaus are under certain conditions correctly predicted by generalized Gibbs ensembles, which are the appropriate extension of standard statistical mechanics in the presence of many constants of motion. This establishes that the relaxation behaviors of integrable and nearly integrable systems are continuously connected and described by the same statistical theory.Comment: 11 pages, 2 figure

    Local Versus Global Thermal States: Correlations and the Existence of Local Temperatures

    Get PDF
    We consider a quantum system consisting of a regular chain of elementary subsystems with nearest neighbor interactions and assume that the total system is in a canonical state with temperature TT. We analyze under what condition the state factors into a product of canonical density matrices with respect to groups of nn subsystems each, and when these groups have the same temperature TT. While in classical mechanics the validity of this procedure only depends on the size of the groups nn, in quantum mechanics the minimum group size nminn_{min} also depends on the temperature TT ! As examples, we apply our analysis to a harmonic chain and different types of Ising spin chains. We discuss various features that show up due to the characteristics of the models considered. For the harmonic chain, which successfully describes thermal properties of insulating solids, our approach gives a first quantitative estimate of the minimal length scale on which temperature can exist: This length scale is found to be constant for temperatures above the Debye temperature and proportional to T3T^{-3} below.Comment: 12 pages, 5 figures, discussion of results extended, accepted for publication in Phys. Rev.

    Explanation of the Gibbs paradox within the framework of quantum thermodynamics

    Full text link
    The issue of the Gibbs paradox is that when considering mixing of two gases within classical thermodynamics, the entropy of mixing appears to be a discontinuous function of the difference between the gases: it is finite for whatever small difference, but vanishes for identical gases. The resolution offered in the literature, with help of quantum mixing entropy, was later shown to be unsatisfactory precisely where it sought to resolve the paradox. Macroscopic thermodynamics, classical or quantum, is unsuitable for explaining the paradox, since it does not deal explicitly with the difference between the gases. The proper approach employs quantum thermodynamics, which deals with finite quantum systems coupled to a large bath and a macroscopic work source. Within quantum thermodynamics, entropy generally looses its dominant place and the target of the paradox is naturally shifted to the decrease of the maximally available work before and after mixing (mixing ergotropy). In contrast to entropy this is an unambiguous quantity. For almost identical gases the mixing ergotropy continuously goes to zero, thus resolving the paradox. In this approach the concept of ``difference between the gases'' gets a clear operational meaning related to the possibilities of controlling the involved quantum states. Difficulties which prevent resolutions of the paradox in its entropic formulation do not arise here. The mixing ergotropy has several counter-intuitive features. It can increase when less precise operations are allowed. In the quantum situation (in contrast to the classical one) the mixing ergotropy can also increase when decreasing the degree of mixing between the gases, or when decreasing their distinguishability. These points go against a direct association of physical irreversibility with lack of information.Comment: Published version. New title. 17 pages Revte

    The complexity of energy eigenstates as a mechanism for equilibration

    Get PDF
    Understanding the mechanisms responsible for the equilibration of isolated quantum many-body systems is a long-standing open problem. In this work we obtain a statistical relationship between the equilibration properties of Hamiltonians and the complexity of their eigenvectors, provided that a conjecture about the incompressibility of quantum circuits holds. We quantify the complexity by the size of the smallest quantum circuit mapping the local basis onto the energy eigenbasis. Specifically, we consider the set of all Hamiltonians having complexity C, and show that almost all such Hamiltonians equilibrate if C is super-quadratic with the system size, which includes the fully random Hamiltonian case in the limit C to infinity, and do not equilibrate if C is sub-linear. We also provide a simple formula for the equilibration time-scale in terms of the Fourier transform of the level density. Our results are statistical and, therefore, do not apply to specific Hamiltonians. Yet, they establish a fundamental link between equilibration and complexity theory.Comment: improved version (6 pages + appendix

    Insights into the Second Law of Thermodynamics from Anisotropic Gas-Surface Interactions

    Full text link
    Thermodynamic implications of anisotropic gas-surface interactions in a closed molecular flow cavity are examined. Anisotropy at the microscopic scale, such as might be caused by reduced-dimensionality surfaces, is shown to lead to reversibility at the macroscopic scale. The possibility of a self-sustaining nonequilibrium stationary state induced by surface anisotropy is demonstrated that simultaneously satisfies flux balance, conservation of momentum, and conservation of energy. Conversely, it is also shown that the second law of thermodynamics prohibits anisotropic gas-surface interactions in "equilibrium", even for reduced dimensionality surfaces. This is particularly startling because reduced dimensionality surfaces are known to exhibit a plethora of anisotropic properties. That gas-surface interactions would be excluded from these anisotropic properties is completely counterintuitive from a causality perspective. These results provide intriguing insights into the second law of thermodynamics and its relation to gas-surface interaction physics.Comment: 28 pages, 11 figure
    corecore