74 research outputs found

    Insights into the nature of the active sites of pt-wox/al2o3 catalysts for glycerol hydrogenolysis into 1, 3-propanediol

    Get PDF
    The chemo-selective hydrogenolysis of secondary hydroxyls is an important reaction for the production of biomass-derived a, ¿-diols. This is the case for 1, 3-propanediol production from glycerol. Supported Pt-WOx materials are effective catalysts for this transformation, and their activity is often related to the tungsten surface density and Brönsted acidity, although there are discrepancies in this regard. In this work, a series of Pt-WOx/¿-Al2O3 catalysts were prepared by modifying the pH of the solutions used in the active metal impregnation step. The activity–structure relation-ships, together with the results from the addition of in situ titrants, i.e., 2, 6-di-tert-butyl-pyridine or pyridine, helped in elucidating the nature of the bifunctional active sites for the selective production of 1, 3-propanediol. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Group classification of heat conductivity equations with a nonlinear source

    Full text link
    We suggest a systematic procedure for classifying partial differential equations invariant with respect to low dimensional Lie algebras. This procedure is a proper synthesis of the infinitesimal Lie's method, technique of equivalence transformations and theory of classification of abstract low dimensional Lie algebras. As an application, we consider the problem of classifying heat conductivity equations in one variable with nonlinear convection and source terms. We have derived a complete classification of nonlinear equations of this type admitting nontrivial symmetry. It is shown that there are three, seven, twenty eight and twelve inequivalent classes of partial differential equations of the considered type that are invariant under the one-, two-, three- and four-dimensional Lie algebras, correspondingly. Furthermore, we prove that any partial differential equation belonging to the class under study and admitting symmetry group of the dimension higher than four is locally equivalent to a linear equation. This classification is compared to existing group classifications of nonlinear heat conductivity equations and one of the conclusions is that all of them can be obtained within the framework of our approach. Furthermore, a number of new invariant equations are constructed which have rich symmetry properties and, therefore, may be used for mathematical modeling of, say, nonlinear heat transfer processes.Comment: LaTeX, 51 page

    Conservation laws for self-adjoint first order evolution equations

    Full text link
    In this work we consider the problem on group classification and conservation laws of the general first order evolution equations. We obtain the subclasses of these general equations which are quasi-self-adjoint and self-adjoint. By using the recent Ibragimov's Theorem on conservation laws, we establish the conservation laws of the equations admiting self-adjoint equations. We illustrate our results applying them to the inviscid Burgers' equation. In particular an infinite number of new symmetries of these equations are found and their corresponding conservation laws are established.Comment: This manuscript has been accepted for publication in Journal of Nonlinear Mathematical Physic

    On the geometry of lambda-symmetries, and PDEs reduction

    Full text link
    We give a geometrical characterization of λ\lambda-prolongations of vector fields, and hence of λ\lambda-symmetries of ODEs. This allows an extension to the case of PDEs and systems of PDEs; in this context the central object is a horizontal one-form μ\mu, and we speak of μ\mu-prolongations of vector fields and μ\mu-symmetries of PDEs. We show that these are as good as standard symmetries in providing symmetry reduction of PDEs and systems, and explicit invariant solutions

    New conditional symmetries and exact solutions of nonlinear reaction-diffusion-convection equations. II

    Full text link
    In the first part of this paper math-ph/0612078, a complete description of Q-conditional symmetries for two classes of reaction-diffusion-convection equations with power diffusivities is derived. It was shown that all the known results for reaction-diffusion equations with power diffusivities follow as particular cases from those obtained in math-ph/0612078 but not vise versa. In the second part the symmetries obtained in are successfully applied for constructing exact solutions of the relevant equations. In the particular case, new exact solutions of nonlinear reaction-diffusion-convection (RDC) equations arising in application and their natural generalizations are found

    Modifying the magnetic response of magnetotactic bacteria: incorporation of Gd and Tb ions into the magnetosome structure

    Get PDF
    Magnetotactic bacteria Magnetospirillum gryphiswaldense MSR-1 biosynthesise chains of cube–octahedral magnetosomes, which are 40 nm magnetite high quality (Fe3O4) nanoparticles. The magnetic properties of these crystalline magnetite nanoparticles, which can be modified by the addition of other elements into the magnetosome structure (doping), are of prime interest in a plethora of applications, those related to cancer therapy being some of the most promising ones. Although previous studies have focused on transition metal elements, rare earth (RE) elements are very interesting as doping agents, both from a fundamental point of view (e.g. significant differences in ionic sizes) and for the potential applications, especially in biomedicine (e.g. magnetic resonance imaging and luminescence). In this work, we have investigated the impact of Gd and Tb on the magnetic properties of magnetosomes by using different complementary techniques. X-ray diffraction, transmission electron microscopy, and X-ray absorption near edge spectroscopy analyses have revealed that a small amount of RE ions, ∼3–4%, incorporate into the Fe3O4 structure as Gd3+ and Tb3+ ions. The experimental magnetic characterisation has shown a clear Verwey transition for the RE-doped bacteria, located at T ∼ 100 K, which is slightly below the one corresponding to the undoped ones (106 K). However, we report a decrease in the coercivity and remanence of the RE-doped bacteria. Simulations based on the Stoner–Wohlfarth model have allowed us to associate these changes in the magnetic response with a reduction of the magnetocrystalline (KC) and, especially, the uniaxial (Kuni) anisotropies below the Verwey transition. In this way, Kuni reaches a value of 23 and 26 kJ m−3 for the Gd- and Tb-doped bacteria, respectively, whilst a value of 37 kJ m−3 is obtained for the undoped bacteria.This work was supported in part by the Spanish MCIN/AEI under Projects MAT2017-83631-C3-R and PID2020-115704RB-C33. The work of Elizabeth M. Jefremovas was supported by the “Concepción Arenal Grant” awarded by Gobierno de Cantabria and Universidad de Cantabria. The work of Lourdes Marcano was supported by the Postdoctoral Fellowship from the Basque Government under Grant POS-2019-2-0017. The authors would like to thank “Nanotechnology in translational hyperthermia” (HIPERNANO)-RED2018-102626-T. We thank the ALBA (CLAESS beamline) synchrotron radiation facilities and staff for the allocation of beamtime and assistance during the experiments

    Approximate nonlinear self-adjointness and approximate conservation laws

    Full text link
    In this paper, approximate nonlinear self-adjointness for perturbed PDEs is introduced and its properties are studied. Consequently, approximate conservation laws which cannot be obtained by the approximate Noether theorem are constructed by means of the method. As an application, a class of perturbed nonlinear wave equations is considered to illustrate the effectiveness.Comment: 13 pages, 2 table

    On the relation between standard and μ\mu-symmetries for PDEs

    Full text link
    We give a geometrical interpretation of the notion of μ\mu-prolongations of vector fields and of the related concept of μ\mu-symmetry for partial differential equations (extending to PDEs the notion of λ\lambda-symmetry for ODEs). We give in particular a result concerning the relationship between μ\mu-symmetries and standard exact symmetries. The notion is also extended to the case of conditional and partial symmetries, and we analyze the relation between local μ\mu-symmetries and nonlocal standard symmetries.Comment: 25 pages, no figures, latex. to be published in J. Phys.

    Group Analysis of Variable Coefficient Diffusion-Convection Equations. I. Enhanced Group Classification

    Full text link
    We discuss the classical statement of group classification problem and some its extensions in the general case. After that, we carry out the complete extended group classification for a class of (1+1)-dimensional nonlinear diffusion--convection equations with coefficients depending on the space variable. At first, we construct the usual equivalence group and the extended one including transformations which are nonlocal with respect to arbitrary elements. The extended equivalence group has interesting structure since it contains a non-trivial subgroup of non-local gauge equivalence transformations. The complete group classification of the class under consideration is carried out with respect to the extended equivalence group and with respect to the set of all point transformations. Usage of extended equivalence and correct choice of gauges of arbitrary elements play the major role for simple and clear formulation of the final results. The set of admissible transformations of this class is preliminary investigated.Comment: 25 page

    Tuning the Magnetic Response of Magnetospirillum magneticum by Changing the Culture Medium A Straightforward Approach to Improve Their Hyperthermia Efficiency

    Get PDF
    Magnetotactic bacteria Magnetospirillum magneticum AMB 1 have been cultured using three different media magnetic spirillum growth medium with Wolfe s mineral solution MSGM W , magnetic spirillum growth medium without Wolfe s mineral solution MSGM W , and flask standard medium FSM . The influence of the culture medium on the structural, morphological, and magnetic characteristics of the magnetosome chains biosynthesized by these bacteria has been investigated by using transmission electron microscopy, X ray absorption spectroscopy, and X ray magnetic circular dichroism. All bacteria exhibit similar average size for magnetosomes, 40 45 nm, but FSM bacteria present slightly longer subchains. In MSGM W bacteria, Co2 ions present in the medium substitute Fe2 ions in octahedral positions with a total Co doping around 4 5 . In addition, the magnetic response of these bacteria has been thoroughly studied as functions of both the temperature and the applied magnetic field. While MSGM W and FSM bacteria exhibit similar magnetic behavior, in the case of MSGM W, the incorporation of the Co ions affects the magnetic response, in particular suppressing the Verwey amp; 8764;105 K and low temperature amp; 8764;40 K transitions and increasing the coercivity and remanence. Moreover, simulations based on a Stoner Wolhfarth model have allowed us to reproduce the experimentally obtained magnetization versus magnetic field loops, revealing clear changes in different anisotropy contributions for these bacteria depending on the employed culture medium. Finally, we have related how these magnetic changes affect their heating efficiency by using AC magnetometric measurements. The obtained AC hysteresis loops, measured with an AC magnetic field amplitude of up to 90 mT and a frequency, f, of 149 kHz, reveal the influence of the culture medium on the heating properties of these bacteria below 35 mT, MSGM W bacteria are the best heating mediators, but above 60 mT, FSM and MSGM W bacteria give the best heating results, reaching a maximum heating efficiency or specific absorption rate SAR of SAR f amp; 8776; 12 W g 1 kHz
    corecore