1,231 research outputs found

    Stability and flow fields structure for interfacial dynamics with interfacial mass flux

    Get PDF
    We analyze from a far field the evolution of an interface that separates ideal incompressible fluids of different densities and has an interfacial mass flux. We develop and apply the general matrix method to rigorously solve the boundary value problem involving the governing equations in the fluid bulk and the boundary conditions at the interface and at the outside boundaries of the domain. We find the fundamental solutions for the linearized system of equations, and analyze the interplay of interface stability with flow fields structure, by directly linking rigorous mathematical attributes to physical observables. New mechanisms are identified of the interface stabilization and destabilization. We find that interfacial dynamics is stable when it conserves the fluxes of mass, momentum and energy. The stabilization is due to inertial effects causing small oscillations of the interface velocity. In the classic Landau dynamics, the postulate of perfect constancy of the interface velocity leads to the development of the Landau-Darrieus instability. This destabilization is also associated with the imbalance of the perturbed energy at the interface, in full consistency with the classic results. We identify extreme sensitivity of the interface dynamics to the interfacial boundary conditions, including formal properties of fundamental solutions and qualitative and quantitative properties of the flow fields. This provides new opportunities for studies, diagnostics, and control of multiphase flows in a broad range of processes in nature and technology

    Two-Triplet-Dimer Excitation Spectra in the Shastry-Sutherland Model for SrCu_2(BO_3)_2

    Full text link
    By using the perturbation expansion up to the fifth order, we study the two-triplet-dimer excitation spectra in the Shastry-Sutherland model, where the localized nature of a triplet-dimer, the propagation of a triplet-dimer pair by the correlated hopping and the long-range interactions between triplet-dimers play an essential role. It is found that the dispersion relations for first-neighbor triplet-dimer pair excitations with S=1 and p-type symmetry qualitatively explain the second-lowest branch observed in the neutron inelastic scattering experiment. It is also predicted that the second-lowest branch consists of two components, p_x- and p_y-states, with slightly different excitation energies. The origin of the singlet mode at 3.7meV observed in the Raman scattering experiment is also discussed.Comment: 5 pages, 3 figure

    Livestock Producer’s Nutrient Management Planner Guidebook: A Waste Management Planning Guide for Pacific Island Livestock Producers

    Get PDF
    This Livestock Producer’s Nutrient Management Planner provides you, the livestock producer, with help in developing an animal waste management plan for your farm. The plan will be unique to each individual farm due to differences in the types of animals you raise, where your farm is located, and how you manage your operation. This workbook is designed to provide the basics on laws and regulations, the concept of nutrient flow through your farm, a series of worksheets to establish the status of your operation, and a guide to developing your farm’s nutrient management plan

    Exchange interactions and magnetic properties of the layered vanadates CaV2O5, MgV2O5, CaV3O7 and CaV4O9

    Full text link
    We have performed ab-initio calculations of exchange couplings in the layered vanadates CaV2O5, MgV2O5, CaV3O7 and CaV4O9. The uniform susceptibility of the Heisenberg model with these exchange couplings is then calculated by quantum Monte Carlo method; it agrees well with the experimental measurements. Based on our results we naturally explain the unusual magnetic properties of these materials, especially the huge difference in spin gap between CaV2O5 and MgV2O5, the unusual long range order in CaV3O7 and the "plaquette resonating valence bond (RVB)" spin gap in CaV4O9

    First-principles study on the intermediate compounds of LiBH4_4

    Full text link
    We report the results of the first-principles calculation on the intermediate compounds of LiBH4_4. The stability of LiB3_3H8_8 and Li2_2Bn_nHn(n=512)_n (n=5-12) has been examined with the ultrasoft pseudopotential method based on the density functional theory. Theoretical prediction has suggested that monoclinic Li2_2B12_{12}H12_{12} is the most stable among the candidate materials. We propose the following hydriding/dehydriding process of LiBH4_4 via this intermediate compound : LiBH41/12_4 \leftrightarrow {1/12}Li2_{2}B12_{12}H12+5/6_{12} + {5/6} LiH +13/12+ {13/12}H2_2 \leftrightarrow LiH ++ B +3/2+ {3/2} H2_2. The hydrogen content and enthalpy of the first reaction are estimated to be 10 mass% and 56 kJ/mol H2_2, respectively, and those of the second reaction are 4 mass% and 125 kJ/mol H2_2. They are in good agreement with experimental results of the thermal desorption spectra of LiBH4_4. Our calculation has predicted that the bending modes for the Γ\Gamma-phonon frequencies of monoclinic Li2_2B12_{12}H12_{12} are lower than that of LiBH4_4, while stretching modes are higher. These results are very useful for the experimental search and identification of possible intermediate compounds.Comment: 7 pages, 5 figures, submitted to PR

    Localization properties of a one-dimensional tight-binding model with non-random long-range inter-site interactions

    Get PDF
    We perform both analytical and numerical studies of the one-dimensional tight-binding Hamiltonian with stochastic uncorrelated on-site energies and non-fluctuating long-range hopping integrals . It was argued recently [A. Rodriguez at al., J. Phys. A: Math. Gen. 33, L161 (2000)] that this model reveals a localization-delocalization transition with respect to the disorder magnitude provided . The transition occurs at one of the band edges (the upper one for and the lower one for). The states at the other band edge are always localized, which hints on the existence of a single mobility edge. We analyze the mobility edge and show that, although the number of delocalized states tends to infinity, they form a set of null measure in the thermodynamic limit, i.e. the mobility edge tends to the band edge. The critical magnitude of disorder for the band edge states is computed versus the interaction exponent by making use of the conjecture on the universality of the normalized participation number distribution at transition.Comment: 7 pages, 6 postscript figures, uses revtex

    Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings

    Get PDF
    High cooling rates during laser cladding of stainless steels may alter the microstructure and phase constitution of the claddings and consequently change their functional properties. In this research, solidification structures and solid state phase transformation products in single and multi layer AISI 431 martensitic stainless steel coatings deposited by laser cladding at different processing speeds are investigated by optical microscopy, Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), orientation imaging microscopy (OIM), ternary phase diagram, Schaeffler and TTT diagrams. The results of this study show how partitionless solidification and higher solidification rates alter the microstructure and phase constitution of martensitic stainless steel laser deposited coatings. In addition, it is shown that while different cladding speeds have no effect on austenite–martensite orientation relationship in the coatings, increasing the cladding speed has resulted in a reduction of hardness in deposited coatings which is in contrast to the common idea about obtaining higher hardness values at higher cladding speeds.

    Regulation of Apoptosis in Myeloid Cells by Interferon Consensus Sequence–Binding Protein

    Get PDF
    Mice with a null mutation of the gene encoding interferon consensus sequence–binding protein (ICSBP) develop a disease with marked expansion of granulocytes and macrophages that frequently progresses to a fatal blast crisis, thus resembling human chronic myelogenous leukemia (CML). One important feature of CML is decreased responsiveness of myeloid cells to apoptotic stimuli. Here we show that myeloid cells from mice deficient in ICSBP exhibit reduced spontaneous apoptosis and a significant decrease in sensitivity to apoptosis induced by DNA damage. In contrast, apoptosis in thymocytes from ICSBP-deficient mice is unaffected. We also show that overexpression of ICSBP in the human U937 monocytic cell line enhances the rate of spontaneous apoptosis and the sensitivity to apoptosis induced by etoposide, lipopolysaccharide plus ATP, or rapamycin. Programmed cell death induced by etoposide was specifically blocked by peptides inhibitory for the caspase-1 or caspase-3 subfamilies of caspases. Studies of proapoptotic genes showed that cells overexpressing ICSBP have enhanced expression of caspase-3 precursor protein. In addition, analyses of antiapoptotic genes showed that overexpression of ICSBP results in decreased expression of Bcl-XL. These data suggest that ICSBP modulates survival of myeloid cells by regulating expression of apoptosis-related genes
    corecore