1,319 research outputs found

    AKARI-CAS --- Online Service for AKARI All-Sky Catalogues

    Full text link
    The AKARI All-Sky Catalogues are an important infrared astronomical database for next-generation astronomy that take over the IRAS catalog. We have developed an online service, AKARI Catalogue Archive Server (AKARI-CAS), for astronomers. The service includes useful and attractive search tools and visual tools. One of the new features of AKARI-CAS is cached SIMBAD/NED entries, which can match AKARI catalogs with other catalogs stored in SIMBAD or NED. To allow advanced queries to the databases, direct input of SQL is also supported. In those queries, fast dynamic cross-identification between registered catalogs is a remarkable feature. In addition, multiwavelength quick-look images are displayed in the visualization tools, which will increase the value of the service. In the construction of our service, we considered a wide variety of astronomers' requirements. As a result of our discussion, we concluded that supporting users' SQL submissions is the best solution for the requirements. Therefore, we implemented an RDBMS layer so that it covered important facilities including the whole processing of tables. We found that PostgreSQL is the best open-source RDBMS products for such purpose, and we wrote codes for both simple and advanced searches into the SQL stored functions. To implement such stored functions for fast radial search and cross-identification with minimum cost, we applied a simple technique that is not based on dividing celestial sphere such as HTM or HEALPix. In contrast, the Web application layer became compact, and was written in simple procedural PHP codes. In total, our system realizes cost-effective maintenance and enhancements.Comment: Yamauchi, C. et al. 2011, PASP..123..852

    Band-width control in a perovskite-type 3d^1 correlated metal Ca_1-xSr_xVO_3. II. Optical spectroscopy investigation

    Full text link
    Optical conductivity spectra of single crystals of Ca_1-xSr_xVO_3 have been studied to elucidate how the electronic behavior depends on the strength of the electron correlation without changing the nominal number of electrons per vanadium atom. The effective mass deduced by the analysis of the Drude-like contribution do not show critical enhancement, even though the system is close to the Mott transition. Besides the Drude-like contribution, two anomalous features were observed in the optical conductivity spectra of the intraband transition within the 3d band. These features can be assigned to transitions involving the incoherent and coherent bands near the Fermi level. The large spectral weight redistribution in this system, however, does not involve a large mass enhancement.Comment: 12 pages in a Phys. Rev. B camera-ready format with 16 EPS figures embedded. LaTeX 2.09 source file using "camera.sty" and "prbplug.sty" provided by N. Shirakawa. For OzTeX (Macintosh), use "ozfig.sty" instead of "psfig.sty". "ozfig.sty" can be also obtained by e-mail request to N. Shirakawa: . Submitted to Phys. Rev. B. See "Part I (by Inoue et al.)" at cond-mat/980107

    Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfaces

    Full text link
    The formation energies of nanostructures play an important role in determining their properties, including the catalytic activity. For the case of 15 different rutile and 8 different perovskite metal oxides, we find that the density functional theory (DFT) calculated formation energies of (2,2) nanorods, (3,3) nanotubes, and the (110) and (100) surfaces may be described semi-quantitatively by the fraction of metal--oxygen bonds broken and the bonding band centers in the bulk metal oxide

    G-type antiferromagnetism and orbital ordering due to the crystal field from the rare-earth ions induced by the GdFeO_3-type distortion in RTiO_3 with R=La, Pr, Nd and Sm

    Full text link
    The origin of the antiferromagnetic order and puzzling properties of LaTiO_3 as well as the magnetic phase diagram of the perovskite titanates are studied theoretically. We show that in LaTiO_3, the t_{2g} degeneracy is eventually lifted by the La cations in the GdFeO_3-type structure, which generates a crystal field with nearly trigonal symmetry. This allows the description of the low-energy structure of LaTiO_3 by a single-band Hubbard model as a good starting point. The lowest-orbital occupation in this crystal field stabilizes the AFM(G) state, and well explains the spin-wave spectrum of LaTiO_3 obtained by the neutron scattering experiment. The orbital-spin structures for RTiO_3 with R=Pr, Nd and Sm are also accounted for by the same mechanism. We point out that through generating the R crystal field, the GdFeO_3-type distortion has a universal relevance in determining the orbital-spin structure of the perovskite compounds in competition with the Jahn-Teller mechanism, which has been overlooked in the literature. Since the GdFeO_3-type distortion is a universal phenomenon as is seen in a large number of perovskite compounds, this mechanism may also play important roles in other compounds of this type.Comment: 20 pages, 15 figure

    Orbital Physics in the Perovskite Ti Oxides

    Full text link
    In the perovskite Ti oxide RTiO3 (R=rare-earth ions), the Ti t2g orbitals and spins in the 3d^1 state couple each other through the strong electron correlations, resulting in a rich variety of orbital-spin phases. The origin and nature of orbital-spin states of these Mott insulators have been intensively studied. In this article, we review the studies on orbital physics in the perovskite titanates. We focus on the following three topics: (1) the origin and nature of the ferromagnetism as well as the orbital ordering in the compounds with relatively small R ions such as GdTiO3 and YTiO3, (2) the origin of the G-type antiferromagnetism and the orbital state in LaTiO3, and (3) the orbital-spin structures in other AFM(G) compounds with relatively large R ions (R=Ce, Pr, Nd and Sm). On the basis of these discussions, we discuss the whole phase diagram together with mechanisms of the magnetic phase transition. We also show that the Ti t2g degeneracy is inherently lifted in the titanates, which allows the single-band descriptions of the ground-state and low-energy electronic structures as a good starting point. Our analyses indicate that these compounds offer touchstone materials described by the single-band Hubbard model on the cubic lattice. From this insight, we also reanalyze the hole-doped titanates. Experimentally revealed filling-dependent and bandwidth-dependent properties and the critical behavior of the metal-insulator transitions are discussed in the light of theories based on the single-band Hubbard models.Comment: Review article, 26 pages, to appear in New Journal of Physic

    Quasiparticle interfacial level alignment of highly hybridized frontier levels: H2_2O on TiO2_2(110)

    Get PDF
    Knowledge of the frontier levels' alignment prior to photo-irradiation is necessary to achieve a complete quantitative description of H2_2O photocatalysis on TiO2_2(110). Although H2_2O on rutile TiO2_2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2_2O occupied levels is still lacking. For experiment, this is due to the H2_2O levels being obscured by hybridization with TiO2_2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2_2O-TiO2_2(110) interface. Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) G0W0G_0W_0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2_2O on TiO2_2(110). We perform this separation as a function of H2_2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2_2(110) surface, the H2_2O 3a1_1 and 1b1_1 levels are broadened into several peaks between 5 and 1 eV below the TiO2_2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2_2O adsorbed intact and dissociated on stoichiometric TiO2_2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2_2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGWGW (scQPGWGW1) to obtain the ionization potential of the H2_2O-TiO2_2(110) interface.Comment: 12 pages, 12 figures, 1 tabl
    corecore