121 research outputs found

    The Stellar Initial Mass Function in the Galactic Center

    Full text link
    Massive stars define the upper limits of the star formation process, dominate the energetics of their local environs, and significantly affect the chemical evolution of galaxies. Their role in starburst galaxies and the early Universe is likely to be important, but we still do not know the maximum mass that a star can possess, i.e.``the upper mass cutoff.'' I will discuss results from a program to measure the upper mass cutoff and IMF slope in the Galactic Center. The results suggest that the IMF in the Galactic center may deviate significantly from the Salpeter value, and that there may be an upper mass cutoff to the initial mass function of ∌\sim150 Msun.Comment: To be published in the IMF@50 conference proceeding

    Further Wolf-Rayet stars in the starburst cluster Westerlund 1

    Get PDF
    We present new low and intermediate-resolution spectroscopic observations of the Wolf Rayet (WR) star population in the massive starburst cluster Westerlund 1. Finding charts are presented for five new WRs - four WNL and one WCL - raising the current total of known WRs in the cluster to 19. We also present new spectra and correct identifications for the majority of the 14 WR stars previously known, notably confirming the presence of two WNVL stars. Finally we briefly discuss the massive star population of Westerlund 1 in comparison to other massive young galactic clusters.Comment: Accepted for publication in Astronomy & Astrophysics. Eight pages, six figures. Replaced with final version, some minor change

    A third red supergiant rich cluster in the Scutum-Crux arm

    Get PDF
    Aims. We aim to characterise the properties of a third massive, red supergiant dominated galactic cluster. Methods. To accomplish this we utilised a combination of near/mid-IR photometry and spectroscopy to identify and classify the properties of cluster members, and statistical arguments to determine the mass of the cluster. Results. We found a total of 16 strong candidates for cluster membership, for which formal classification of a subset yields spectral types from K3-M4 Ia and luminosities between log(L/L-circle dot) similar to 4.5-4.8 for an adopted distance of 6 +/- 1 kpc. For an age in the range of 16-20 Myr, the implied mass is 2-4 x 10(4) M-circle dot, making it one of the most massive young clusters in the Galaxy. This discovery supports the hypothesis that a significant burst of star formation occurred at the base of Scutum-Crux arm between 10-20 Myr ago, yielding a stellar complex comprising at least similar to 10(5) M-circle dot of stars (noting that since the cluster identification criteria rely on the presence of RSGs, we suspect that the true stellar yield will be significantly higher). We highlight the apparent absence of X-ray binaries within the star formation complex and finally, given the physical association of at least two pulsars with this region, discuss the implications of this finding for stellar evolution and the production and properties of neutron stars

    Theoretical Isochrones with Extinction in the K Band. II. J - K versus K

    Full text link
    We calculate theoretical isochrones in a consistent way for five filter pairs near the J and K band atmospheric windows (J-K, J-K', J-Ks, F110W-F205W, and F110W-F222M) using the Padova stellar evolutionary models of Girardi et al. We present magnitude transformations between various K-band filters as a function of color. Isochrones with extinction of up to 6 mag in the K band are also presented. As found for the filter pairs composed of H & K band filters, we find that the reddened isochrones of different filter pairs behave as if they follow different extinction laws, and that the extinction curves of Hubble Space Telescope NICMOS filter pairs in the color-magnitude diagram are considerably nonlinear. Because of these problems, extinction values estimated with NICMOS filters can be in error by up to 1.3 mag. Our calculation suggests that the extinction law implied by the observations of Rieke et al for wavelengths between the J and K bands is better described by a power-law function with an exponent of 1.66 instead of 1.59, which is commonly used with an assumption that the transmission functions of J and K filters are Dirac delta functions.Comment: Published in PASP, 118, 62 (Jan. 2006

    A High-Resolution Survey of HI Absorption toward the Central 200 pc of the Galactic Center

    Full text link
    We present an HI absorption survey of the central 250 pc of the Galaxy. Very Large Array (VLA) observations were made at 21 cm in the DnC and CnB configurations and have a resolution of ~15"(0.6 pc at the Galactic Center (GC) distance) and a velocity resolution of ~2.5 km/s. This study provides HI data with high spatial resolution, comparable with the many high resolution observations which have been made of GC sources over the past ten years. Here we present an overview of the HI absorption toward ~40 well-known continuum sources and a detailed comparison of the ionized, atomic and molecular components of the interstellar medium for the Sgr B, Radio Arc and Sgr C regions. In these well-known regions, the atomic gas appears to be closely correlated in both velocity and distribution to the ionized and molecular gas, indicating that it resides in photo-dissociation regions related to the HII regions in the GC. Toward the majority of the radio continuum sources, HI absorption by the 3-kpc arm is detected, constraining these sources to lie beyond a 5 kpc distance in the Galaxy.Comment: 59 pages, including 41 figures; accepted for publication in Astrophysical Journal Supplement Series in December 201

    K-Band Spectroscopy of an Obscured Massive Stellar Cluster in the Antennae Galaxies (NGC 4038/4039) with NIRSPEC

    Get PDF
    We present infrared spectroscopy of the Antennae Galaxies (NGC 4038/4039) with NIRSPEC at the W. M. Keck Observatory. We imaged the star clusters in the vicinity of the southern nucleus (NGC 4039) in 0.39" seeing in K-band using NIRSPEC's slit-viewing camera. The brightest star cluster revealed in the near-IR (M_K(0) = -17.9) is insignificant optically, but coincident with the highest surface brightness peak in the mid-IR (12-18 um) ISO image presented by Mirabel et al (1998). We obtained high signal-to-noise 2.03-2.45 um spectra of the nucleus and the obscured star cluster at R = 1900. The cluster is very young (age ~ 4 Myr), massive (M ~ 16E6 M_sun), and compact (density ~ 115 M_sun pc^(-3) within a 32 pc half-light radius), assuming a Salpeter IMF (0.1-100 M_sun). Its hot stars have a radiation field characterized by T_eff ~ 39,000 K, and they ionize a compact HII region with n_e ~ 10^4 cm^(-3). The stars are deeply embedded in gas and dust (A_V = 9-10 mag), and their strong FUV field powers a clumpy photodissociation region with densities n_H > 10^5 cm^(-3) on scales of ~ 200 pc, radiating L{H_2 1-0 S(1)}= 9600 L_sun.Comment: 4 pages, 4 embedded figures, uses emulateapj.sty. To appear in ApJL. Also available at http://astro.berkeley.edu/~agilber

    A Second Luminous Blue Variable in the Quintuplet Cluster

    Get PDF
    H and K band moderate resolution and 4 ÎŒ\mum high resolution spectra have been obtained for FMM#362, a bright star in the Quintuplet Cluster near the Galactic Center. The spectral features in these bands closely match those of the Pistol Star, a luminous blue variable and one of the most luminous stars known. The new spectra and previously-obtained photometry imply a very high luminosity for FMM#362, L ≄106\geq 10^6 \Lsun, and a temperature of 10,000 - 13,000 K. Based on its luminosity, temperature, photometric variability, and similarities to the Pistol Star, we conclude that FMM#362 is a luminous blue variable.Comment: Accepted for publication in The Astrophysical Journal Letters, 4 PostScript figures, 2 table

    Hot Stars and Cool Clouds: The Photodissociation Region M16

    Get PDF
    We present high-resolution spectroscopy and images of a photodissociation region (PDR) in M16 obtained during commissioning of NIRSPEC on the Keck II telescope. PDRs play a significant role in regulating star formation, and M16 offers the opportunity to examine the physical processes of a PDR in detail. We simultaneously observe both the molecular and ionized phases of the PDR and resolve the spatial and kinematic differences between them. The most prominent regions of the PDR are viewed edge-on. Fluorescent emission from nearby stars is the primary excitation source, although collisions also preferentially populate the lowest vibrational levels of H2. Variations in density-sensitive emission line ratios demonstrate that the molecular cloud is clumpy, with an average density n = 3x10^5 cm^(-3). We measure the kinetic temperature of the molecular region directly and find T_H2 = 930 K. The observed density, temperature, and UV flux imply a photoelectric heating efficiency of 4%. In the ionized region, n_i=5x10^3 cm^(-3) and T_HII = 9500 K. In the brightest regions of the PDR, the recombination line widths include a non-thermal component, which we attribute to viewing geometry.Comment: 5 pages including 2 Postscript figures. To appear in ApJ Letters, April 200
    • 

    corecore