65 research outputs found

    Zipf's law, 1/f noise, and fractal hierarchy

    Full text link
    Fractals, 1/f noise, Zipf's law, and the occurrence of large catastrophic events are typical ubiquitous general empirical observations across the individual sciences which cannot be understood within the set of references developed within the specific scientific domains. All these observations are associated with scaling laws and have caused a broad research interest in the scientific circle. However, the inherent relationships between these scaling phenomena are still pending questions remaining to be researched. In this paper, theoretical derivation and mathematical experiments are employed to reveal the analogy between fractal patterns, 1/f noise, and the Zipf distribution. First, the multifractal process follows the generalized Zipf's law empirically. Second, a 1/f spectrum is identical in mathematical form to Zipf's law. Third, both 1/f spectra and Zipf's law can be converted into a self-similar hierarchy. Fourth, fractals, 1/f spectra, Zipf's law, and the occurrence of large catastrophic events can be described with similar exponential laws and power laws. The self-similar hierarchy is a more general framework or structure which can be used to encompass or unify different scaling phenomena and rules in both physical and social systems such as cities, rivers, earthquakes, fractals, 1/f noise, and rank-size distributions. The mathematical laws on the hierarchical structure can provide us with a holistic perspective of looking at complexity such as self-organized criticality (SOC).Comment: 20 pages, 9 figures, 3 table

    Scaling Laws in Human Language

    Get PDF
    Zipf's law on word frequency is observed in English, French, Spanish, Italian, and so on, yet it does not hold for Chinese, Japanese or Korean characters. A model for writing process is proposed to explain the above difference, which takes into account the effects of finite vocabulary size. Experiments, simulations and analytical solution agree well with each other. The results show that the frequency distribution follows a power law with exponent being equal to 1, at which the corresponding Zipf's exponent diverges. Actually, the distribution obeys exponential form in the Zipf's plot. Deviating from the Heaps' law, the number of distinct words grows with the text length in three stages: It grows linearly in the beginning, then turns to a logarithmical form, and eventually saturates. This work refines previous understanding about Zipf's law and Heaps' law in language systems.Comment: 6 pages, 4 figure

    Enhanced reaction kinetics in biological cells

    Full text link
    The cell cytoskeleton is a striking example of "active" medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties : a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose for the first time an analytical model of transport limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers like vesicles. We derive analytically the average interaction time with motor proteins which optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures like axons.Comment: 10 pages, 2 figure

    Classes of fast and specific search mechanisms for proteins on DNA

    Full text link
    Problems of search and recognition appear over different scales in biological systems. In this review we focus on the challenges posed by interactions between proteins, in particular transcription factors, and DNA and possible mechanisms which allow for a fast and selective target location. Initially we argue that DNA-binding proteins can be classified, broadly, into three distinct classes which we illustrate using experimental data. Each class calls for a different search process and we discuss the possible application of different search mechanisms proposed over the years to each class. The main thrust of this review is a new mechanism which is based on barrier discrimination. We introduce the model and analyze in detail its consequences. It is shown that this mechanism applies to all classes of transcription factors and can lead to a fast and specific search. Moreover, it is shown that the mechanism has interesting transient features which allow for stability at the target despite rapid binding and unbinding of the transcription factor from the target.Comment: 65 pages, 23 figure

    Mean first-passage time of surface-mediated diffusion in spherical domains

    Full text link
    We present an exact calculation of the mean first-passage time to a target on the surface of a 2D or 3D spherical domain, for a molecule alternating phases of surface diffusion on the domain boundary and phases of bulk diffusion. The presented approach is based on an integral equation which can be solved analytically. Numerically validated approximation schemes, which provide more tractable expressions of the mean first-passage time are also proposed. In the framework of this minimal model of surface-mediated reactions, we show analytically that the mean reaction time can be minimized as a function of the desorption rate from the surface.Comment: to appear in J. Stat. Phy

    First-passage times in complex scale-invariant media

    Full text link
    How long does it take a random walker to reach a given target point? This quantity, known as a first passage time (FPT), has led to a growing number of theoretical investigations over the last decade1. The importance of FPTs originates from the crucial role played by first encounter properties in various real situations, including transport in disordered media, neuron firing dynamics, spreading of diseases or target search processes. Most methods to determine the FPT properties in confining domains have been limited to effective 1D geometries, or for space dimensions larger than one only to homogeneous media1. Here we propose a general theory which allows one to accurately evaluate the mean FPT (MFPT) in complex media. Remarkably, this analytical approach provides a universal scaling dependence of the MFPT on both the volume of the confining domain and the source-target distance. This analysis is applicable to a broad range of stochastic processes characterized by length scale invariant properties. Our theoretical predictions are confirmed by numerical simulations for several emblematic models of disordered media, fractals, anomalous diffusion and scale free networks.Comment: Submitted version. Supplementary Informations available on Nature websit

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
    • …
    corecore