360 research outputs found

    Phase transitions of an intrinsic curvature model on dynamically triangulated spherical surfaces with point boundaries

    Full text link
    An intrinsic curvature model is investigated using the canonical Monte Carlo simulations on dynamically triangulated spherical surfaces of size upto N=4842 with two fixed-vertices separated by the distance 2L. We found a first-order transition at finite curvature coefficient \alpha, and moreover that the order of the transition remains unchanged even when L is enlarged such that the surfaces become sufficiently oblong. This is in sharp contrast to the known results of the same model on tethered surfaces, where the transition weakens to a second-order one as L is increased. The phase transition of the model in this paper separates the smooth phase from the crumpled phase. The surfaces become string-like between two point-boundaries in the crumpled phase. On the contrary, we can see a spherical lump on the oblong surfaces in the smooth phase. The string tension was calculated and was found to have a jump at the transition point. The value of \sigma is independent of L in the smooth phase, while it increases with increasing L in the crumpled phase. This behavior of \sigma is consistent with the observed scaling relation \sigma \sim (2L/N)^\nu, where \nu\simeq 0 in the smooth phase, and \nu=0.93\pm 0.14 in the crumpled phase. We should note that a possibility of a continuous transition is not completely eliminated.Comment: 15 pages with 10 figure

    Elastic Scattering Phenomenology

    Get PDF
    We argue that, in many situations, fits to elastic scattering data that were historically, and frequently still are, considered “good”, are not justifiably so describable. Information about the dynamics of nucleon-nucleus and nucleus-nucleus scattering is lost when elastic scattering phenomenology is insufficiently ambitious. It is argued that in many situations, an alternative approach is appropriate for the phenomenology of nuclear elastic scattering of nucleons and other light nuclei. The approach affords an appropriate means of evaluating folding models, one that fully exploits available empirical data. It is particularly applicable for nucleons and other light ions

    Association of ATP6V1B2 rs1106634 with lifetime risk of depression and hippocampal neurocognitive deficits: possible novel mechanisms in the etiopathology of depression

    Get PDF
    Current understanding and treatment of depression is limited to the monoaminergic theory with little knowledge of the involvement of other cellular processes. Genome-wide association studies, however, implicate several novel single-nucleotide polymorphisms with weak but replicable effects and unclarified mechanisms. We investigated the effect of rs1106634 of the ATPV1B2 gene encoding the vacuolar H+ATPase on lifetime and current depression and the possible mediating role of neuroticism by logistic and linear regression in a white European general sample of 2226 subjects. Association of rs1106634 with performance on frontal (Stockings of Cambridge (SOC)) and hippocampal-dependent (paired associates learning (PAL)) cognitive tasks was investigated in multivariate general linear models in a smaller subsample. The ATP6V1B2 rs1106634 A allele had a significant effect on lifetime but not on current depression. The effect of the A allele on lifetime depression was not mediated by neuroticism. The A allele influenced performance on the PAL but not on the SOC test. We conclude that the effects of variation in the vacuolar ATPase may point to a new molecular mechanism that influences the long-term development of depression. This mechanism may involve dysfunction specifically in hippocampal circuitry and cognitive impairment that characterizes recurrent and chronic depression

    High-power laser experiment forming a supercritical collisionless shock in a magnetized uniform plasma at rest

    Get PDF
    We present a new experimental method to generate quasi-perpendicular supercritical magnetized collisionless shocks. In our experiment, ambient nitrogen (N) plasma is at rest and well-magnetized, and it has uniform mass density. The plasma is pushed by laser-driven ablation aluminum (Al) plasma. Streaked optical pyrometry and spatially resolved laser collective Thomson scattering clarify structures of plasma density and temperatures, which are compared with one-dimensional particle-in-cell simulations. It is indicated that just after the laser irradiation, the Al plasma is magnetized by a self-generated Biermann battery field, and the plasma slaps the incident N plasma. The compressed external field in the N plasma reflects N ions, leading to counter-streaming magnetized N flows. Namely we identify the edge of the reflected N ions. Such interacting plasmas form a magnetized collisionless shock

    Gestational Valproate Alters BOLD Activation in Response to Complex Social and Primary Sensory Stimuli

    Get PDF
    Valproic acid (VPA) has been used clinically as an anticonvulsant medication during pregnancy; however, it poses a neurodevelopmental risk due to its high teratogenicity. We hypothesized that midgestational (GD) exposure to VPA will lead to lasting deficits in social behavior and the processing of social stimuli. To test this, animals were given a single IP injection of 600 mg/kg of VPA on GD 12.5. Starting on postnatal day 2 (PND2), animals were examined for physical and behavior abnormalities. Functional MRI studies were carried out after PND60. VPA and control animals were given vehicle or a central infusion of a V1a antagonist 90 minutes before imaging. During imaging sessions, rats were presented with a juvenile test male followed by a primary visual stimulus (2 Hz pulsed light) to examine the effects of prenatal VPA on neural processing. VPA rats showed greater increases in BOLD signal response to the social stimulus compared to controls in the temporal cortex, thalamus, midbrain and the hypothalamus. Blocking the V1a receptor reduced the BOLD response in VPA animals only. Neural responses to the visual stimulus, however, were lower in VPA animals. Blockade with the V1a antagonist did not revert this latter effect. Our data suggest that prenatal VPA affects the processing of social stimuli and perhaps social memory, partly through a mechanism that may involve vasopressin V1a neurotransmission

    Lineage-Specific Restraint of Pituitary Gonadotroph Cell Adenoma Growth

    Get PDF
    Although pituitary adenomas are usually benign, unique trophic mechanisms restraining cell proliferation are unclear. As GH-secreting adenomas are associated with p53/p21-dependent senescence, we tested mechanisms constraining non-functioning pituitary adenoma growth. Thirty six gonadotroph-derived non-functioning pituitary adenomas all exhibited DNA damage, but undetectable p21 expression. However, these adenomas all expressed p16, and >90% abundantly expressed cytoplasmic clusterin associated with induction of the Cdk inhibitor p15 in 70% of gonadotroph and in 26% of somatotroph lineage adenomas (p = 0.006). Murine LβT2 and αT3 gonadotroph pituitary cells, and αGSU.PTTG transgenic mice with targeted gonadotroph cell adenomas also abundantly expressed clusterin and exhibited features of oncogene-induced senescence as evidenced by C/EBPβ and C/EBPδ induction. In turn, C/EBPs activated the clusterin promoter ∼5 fold, and elevated clusterin subsequently elicited p15 and p16 expression, acting to arrest murine gonadotroph cell proliferation. In contrast, specific clusterin suppression by RNAis enhanced gonadotroph proliferation. FOXL2, a tissue-specific gonadotroph lineage factor, also induced the clusterin promoter ∼3 fold in αT3 pituitary cells. As nine of 12 pituitary carcinomas were devoid of clusterin expression, this protein may limit proliferation of benign adenomatous pituitary cells. These results point to lineage-specific pathways restricting uncontrolled murine and human pituitary gonadotroph adenoma cell growth

    P301S Mutant Human Tau Transgenic Mice Manifest Early Symptoms of Human Tauopathies with Dementia and Altered Sensorimotor Gating

    Get PDF
    Tauopathies are neurodegenerative disorders characterized by the accumulation of abnormal tau protein leading to cognitive and/or motor dysfunction. To understand the relationship between tau pathology and behavioral impairments, we comprehensively assessed behavioral abnormalities in a mouse tauopathy model expressing the human P301S mutant tau protein in the early stage of disease to detect its initial neurological manifestations. Behavioral abnormalities, shown by open field test, elevated plus-maze test, hot plate test, Y-maze test, Barnes maze test, Morris water maze test, and/or contextual fear conditioning test, recapitulated the neurological deficits of human tauopathies with dementia. Furthermore, we discovered that prepulse inhibition (PPI), a marker of sensorimotor gating, was enhanced in these animals concomitantly with initial neuropathological changes in associated brain regions. This finding provides evidence that our tauopathy mouse model displays neurofunctional abnormalities in prodromal stages of disease, since enhancement of PPI is characteristic of amnestic mild cognitive impairment, a transitional stage between normal aging and dementia such as Alzheimer's disease (AD), in contrast with attenuated PPI in AD patients. Therefore, assessment of sensorimotor gating could be used to detect the earliest manifestations of tauopathies exemplified by prodromal AD, in which abnormal tau protein may play critical roles in the onset of neuronal dysfunctions
    corecore