150 research outputs found

    Robust Design of Connected Cruise Control Among Human-Driven Vehicles

    Get PDF

    On the nature of bright compact radio sources at z>4.5

    Get PDF
    High-redshift radio-loud quasars are used to, among other things, test the predictions of cosmological models, set constraints on black hole growth in the early universe and understand galaxy evolution. Prior to this paper, 20 extragalactic radio sources at redshifts above 4.5 have been imaged with very long baseline interferometry (VLBI). Here we report on observations of an additional ten z>4.5 sources at 1.7 and 5 GHz with the European VLBI Network (EVN), thereby increasing the number of imaged sources by 50%. Combining our newly observed sources with those from the literature, we create a substantial sample of 30 z>4.5 VLBI sources, allowing us to study the nature of these objects. Using spectral indices, variability and brightness temperatures, we conclude that of the 27 sources with sufficient information to classify, the radio emission from one source is from star formation, 13 are flat-spectrum radio quasars and 13 are steep-spectrum sources. We also argue that the steep-spectrum sources are off-axis (unbeamed) radio sources with rest-frame self-absorption peaks at or below GHz frequencies and that these sources can be classified as gigahertz peaked-spectrum (GPS) and megahertz peaked-spectrum (MPS) sources.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society, 18 pages, 1 figure, 7 table

    Evaluation of a commercial intravaginal thermometer to predict calving in a Hungarian Holstein‐Friesian dairy farm

    Get PDF
    In this study, the utility of a commercial intravaginal thermometer was evaluated as an automated method for the prediction of calving in a total of 257 healthy pregnant Holstein–Friesian female cattle. The accuracy and the sensitivity of predicting calving within 48 hr before calving were also evaluated. The intravaginal temperature changes from 72 hr before and up to calving were significantly (p ≤ .001) affected by parity, season (summer vs. autumn), the time of day (8 a.m. or 8 p.m.) and the 6-hr time intervals (38.19°C: first interval 0 to 6 hr before calving vs. 38.78°C: twelfth interval 66 to 72 hr before calving), while the gender (p = .943), and the weight of the calf (p = .610), twinning (p = .300), gestation length (p = .186), foetal presentation (p = .123), dystocia (p = .197) and retention of foetal membranes (p = .253) did not affect it significantly. The sensitivity of the SMS of expecting calving within 48 hr and the positive predictive value were 62.4% and 75%, respectively, while the sensitivity and the positive predictive value for the SMS of expulsion reached 100%. It can be concluded that the investigated thermometer is not able to predict calving within 48 hr accurately; however, imminent calving can be accurately alerted
    corecore