41 research outputs found

    Disturbances in Response Inhibition and Emotional Processing as Potential Pathways to Violence in Schizophrenia: A High-Density Event-Related Potential Study

    Get PDF
    OBJECTIVE: Increased susceptibility to emotional triggers and poor response inhibition are important in the etiology of violence in schizophrenia. Our goal was to evaluate abnormalities in neurophysiological mechanisms underlying response inhibition and emotional processing in violent patients with schizophrenia (VS) and 3 different comparison groups: nonviolent patients (NV), healthy controls (HC) and nonpsychotic violent subjects (NPV). METHODS: We recorded high-density Event-Related Potentials (ERPs) and behavioral responses during an Emotional Go/NoGo Task in 35 VS, 24 NV, 28 HC and 31 NPV subjects. We also evaluated psychiatric symptoms and impulsivity. RESULTS: The neural and behavioral deficits in violent patients were most pronounced when they were presented with negative emotional stimuli: They responded more quickly than NV when they made commission errors (ie, failure of inhibition), and evidenced N2 increases and P3 decreases. In contrast, NVs showed little change in reaction time or ERP amplitude with emotional stimuli. These N2 and P3 amplitude changes in VSs showed a strong association with greater impulsivity. Besides these group specific changes, VSs shared deficits with NV, mostly N2 reduction, and with violent nonpsychotic subjects, particularly P3 reduction. CONCLUSION: Negative affective triggers have a strong impact on violent patients with schizophrenia which may have both behavioral and neural manifestations. The resulting activation could interfere with response inhibition. The affective disruption of response inhibition, identified in this study, may index an important pathway to violence in schizophrenia and suggest new modes of treatment

    Emotion-Related Visual Mismatch Responses in Schizophrenia: Impairments and Correlations with Emotion Recognition.

    Get PDF
    BACKGROUND AND OBJECTIVES:Mismatch negativity (MMN) is an event-related potential (ERP) measure of preattentional sensory processing. While deficits in the auditory MMN are robust electrophysiological findings in schizophrenia, little is known about visual mismatch response and its association with social cognitive functions such as emotion recognition in schizophrenia. Our aim was to study the potential deficit in the visual mismatch response to unexpected facial emotions in schizophrenia and its association with emotion recognition impairments, and to localize the sources of the mismatch signals. EXPERIMENTAL DESIGN:The sample comprised 24 patients with schizophrenia and 24 healthy control subjects. Controls were matched individually to patients by gender, age, and education. ERPs were recorded using a high-density 128-channel BioSemi amplifier. Mismatch responses to happy and fearful faces were determined in 2 time windows over six regions of interest (ROIs). Emotion recognition performance and its association with the mismatch response were also investigated. PRINCIPAL OBSERVATIONS:Mismatch signals to both emotional conditions were significantly attenuated in patients compared to controls in central and temporal ROIs. Controls recognized emotions significantly better than patients. The association between overall emotion recognition performance and mismatch response to the happy condition was significant in the 250-360 ms time window in the central ROI. The estimated sources of the mismatch responses for both emotional conditions were localized in frontal regions, where patients showed significantly lower activity. CONCLUSIONS:Impaired generation of mismatch signals indicate insufficient automatic processing of emotions in patients with schizophrenia, which correlates strongly with decreased emotion recognition

    Regional Grey Matter Structure Differences between Transsexuals and Healthy Controls-A Voxel Based Morphometry Study.

    Get PDF
    Gender identity disorder (GID) refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF) transsexuals and there is scarcity of data acquired on female to male (FTM) transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM) obtained from both FTM and MTF transsexuals (n = 17) and compare them to the data of 18 age matched healthy control subjects (both males and females). We found differences in the regional grey matter (GM) structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri). These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender

    Neuroanatomical Abnormalities in Violent Individuals with and without a Diagnosis of Schizophrenia

    Get PDF
    Several structural brain abnormalities have been associated with aggression in patients with schizophrenia. However, little is known about shared and distinct abnormalities underlying aggression in these subjects and non-psychotic violent individuals. We applied a region-of interest volumetric analysis of the amygdala, hippocampus, and thalamus bilaterally, as well as whole brain and ventricular volumes to investigate violent (n = 37) and non-violent chronic patients (n = 26) with schizophrenia, non-psychotic violent (n = 24) as well as healthy control subjects (n = 24). Shared and distinct volumetric abnormalities were probed by analysis of variance with the factors violence (non-violent versus violent) and diagnosis (non-psychotic versus psychotic), adjusted for substance abuse, age, academic achievement and negative psychotic symptoms. Patients showed elevated vCSF volume, smaller left hippocampus and smaller left thalamus volumes. This was particularly the case for non-violent individuals diagnosed with schizophrenia. Furthermore, patients had reduction in right thalamus size. With regard to left amygdala, we found an interaction between violence and diagnosis. More specifically, we report a double dissociation with smaller amygdala size linked to violence in non-psychotic individuals, while for psychotic patients smaller size was linked to non-violence. Importantly, the double dissociation appeared to be mostly driven by substance abuse. Overall, we found widespread morphometric abnormalities in subcortical regions in schizophrenia. No evidence for shared volumetric abnormalities in individuals with a history of violence was found. Finally, left amygdala abnormalities in non-psychotic violent individuals were largely accounted for by substance abuse. This might be an indication that the association between amygdala reduction and violence is mediated by substance abuse. Our results indicate the importance of structural abnormalities in aggressive individuals

    The neurocognitive functioning in bipolar disorder: a systematic review of data

    Full text link

    Distinctive profiles of traits predisposing to violence in schizophrenia and in the general population

    No full text
    OBJECTIVE: We delineated important trait predispositions to violence, including psychopathic and impulsive traits and trait aggression, in patients with schizophrenia and in the general population. METHOD: The study included 144 subjects: 40 violent (VS's) and 34 nonviolent (NV's) patients with schizophrenia, 35 healthy controls (HC's) and 35 non-psychotic violent subjects (NPV's). We used the Psychopathy Checklist, Buss-Perry Aggression Questionnaire, and Barratt Impulsiveness Scale (BIS-11). Life History of Aggression, psychiatric symptoms, drug/alcohol abuse and history of conduct problems were also assessed. RESULTS: The two violent groups presented with more severe psychopathy, trait aggressiveness and impulsivity than the non-violent subjects; some of these traits being more pronounced in NPV's than in VS's. We further divided the violent patients (VS's) into 2 subgroups, those with a history of conduct problems (VS-CD) and those without (VS-NCD). When we compared these 2 subgroups to each other and to NPV's, we obtained 3 distinct multivariate profiles of traits, consisting of psychopathic traits, anger, motor impulsiveness, and self-control problems. NPV's have the profile with the most severe impairments, followed by VS-CD's and then VS-NCD's. Psychiatric symptoms were more strongly associated with violence in VS-NCD's than in VS-CD's. CONCLUSION: Our study provides new insights on trait predispositions to violence. Trait aggressiveness, psychopathic and impulsive traits form a distinctive profile which underlies a core predisposition to violence across populations, including patients with schizophrenia, but particularly in those with a history of early conduct problems. In those without such problems, the symptoms of the illness play a more important role for the violent behavior

    First report of OXA-72 producing Acinetobacter baumannii in Romania

    No full text
    This is the first report of an OXA-72-producing Acinetobacter baumannii strain in Romania, isolated from chronic leg ulcer samples. Identification of the strain was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Presence of carbapenem resistance genes was investigated by PCR and sequencing. Our data support the spread of the blaOXA-72 gene in Eastern Europe
    corecore