603 research outputs found

    Time-dependent current density functional theory on a lattice

    Full text link
    A rigorous formulation of time-dependent current density functional theory (TDCDFT) on a lattice is presented. The density-to-potential mapping and the V{\cal V}-representability problems are reduced to a solution of a certain nonlinear lattice Schr\"odinger equation, to which the standard existence and uniqueness results for nonliner differential equations are applicable. For two versions of the lattice TDCDFT we prove that any continuous in time current density is locally V{\cal V}-representable (both interacting and noninteracting), provided in the initial state the local kinetic energy is nonzero everywhere. In most cases of physical interest the V{\cal V}-representability should also hold globally in time. These results put the application of TDCDFT to any lattice model on a firm ground, and open a way for studying exact properties of exchange correlation potentials.Comment: revtex4, 9 page

    Project for the analysis of technology transfer Annual report, 1969

    Get PDF
    Technology utilization of NASA programs and other research and development programs in Federal Government - project analysis results of technology transfe

    Nonequilibrium effects of anisotropic compression applied to vortex lattices in Bose-Einstein condensates

    Get PDF
    We have studied the dynamics of large vortex lattices in a dilute-gas Bose-Einstein condensate. While undisturbed lattices have a regular hexagonal structure, large-amplitude quadrupolar shape oscillations of the condensate are shown to induce a wealth of nonequilibrium lattice dynamics. When exciting an m = -2 mode, we observe shifting of lattice planes, changes of lattice structure, and sheet-like structures in which individual vortices appear to have merged. Excitation of an m = +2 mode dissolves the regular lattice, leading to randomly arranged but still strictly parallel vortex lines.Comment: 5 pages, 6 figure

    Experimental studies of equilibrium vortex properties in a Bose-condensed gas

    Get PDF
    We characterize several equilibrium vortex effects in a rotating Bose-Einstein condensate. Specifically we attempt precision measurements of vortex lattice spacing and the vortex core size over a range of condensate densities and rotation rates. These measurements are supplemented by numerical simulations, and both experimental and numerical data are compared to theory predictions of Sheehy and Radzihovsky [17] (cond-mat/0402637) and Baym and Pethick [25] (cond-mat/0308325). Finally, we study the effect of the centrifugal weakening of the trapping spring constants on the critical temperature for quantum degeneracy and the effects of finite temperature on vortex contrast.Comment: Fixed minor notational inconsistencies in figures. 12 pages, 8 figure

    High-Precision Numerical Determination of Eigenvalues for a Double-Well Potential Related to the Zinn-Justin Conjecture

    Full text link
    A numerical method of high precision is used to calculate the energy eigenvalues and eigenfunctions for a symmetric double-well potential. The method is based on enclosing the system within two infinite walls with a large but finite separation and developing a power series solution for the Schro¨\ddot{o}dinger equation. The obtained numerical results are compared with those obtained on the basis of the Zinn-Justin conjecture and found to be in an excellent agreement.Comment: Substantial changes including the title and the content of the paper 8 pages, 2 figures, 3 table

    A naked singularity stable under scalar field perturbations

    Full text link
    We prove the stability of a spacetime with a naked singularity under scalar field perturbations, where the perturbations are regular at the singularity. This spacetime, found by Janis, Newman and Winicour, and independently by Wyman, is sourced by a massless scalar field and also arises as a certain limit of a class of charged dilatonic solutions in string theory. This stability result opens up specific questions for investigation related to the cosmic censorship conjecture and the mechanism by which it is implemented in nature.Comment: 19 pages, version to appear in IJMPD, references adde

    Low-energy expansion formula for one-dimensional Fokker-Planck and Schr\"odinger equations with periodic potentials

    Full text link
    We study the low-energy behavior of the Green function for one-dimensional Fokker-Planck and Schr\"odinger equations with periodic potentials. We derive a formula for the power series expansion of reflection coefficients in terms of the wave number, and apply it to the low-energy expansion of the Green function

    Optical Frequency Comb Generation based on Erbium Fiber Lasers

    Get PDF
    Citation: Droste, S., Ycas, G., Washburn, B. R., Coddington, I., & Newbury, N. R. (2016). Optical Frequency Comb Generation based on Erbium Fiber Lasers. Nanophotonics, 5(2), 196-213. doi:10.1515/nanoph-2016-0019Optical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb

    The type II phase resetting curve is optimal for stochastic synchrony

    Full text link
    The phase-resetting curve (PRC) describes the response of a neural oscillator to small perturbations in membrane potential. Its usefulness for predicting the dynamics of weakly coupled deterministic networks has been well characterized. However, the inputs to real neurons may often be more accurately described as barrages of synaptic noise. Effective connectivity between cells may thus arise in the form of correlations between the noisy input streams. We use constrained optimization and perturbation methods to prove that PRC shape determines susceptibility to synchrony among otherwise uncoupled noise-driven neural oscillators. PRCs can be placed into two general categories: Type I PRCs are non-negative while Type II PRCs have a large negative region. Here we show that oscillators with Type II PRCs receiving common noisy input sychronize more readily than those with Type I PRCs.Comment: 10 pages, 4 figures, submitted to Physical Review

    Critical sets of nonlinear Sturm-Liouville operators of Ambrosetti-Prodi type

    Full text link
    The critical set C of the operator F:H^2_D([0,pi]) -> L^2([0,pi]) defined by F(u)=-u''+f(u) is studied. Here X:=H^2_D([0,pi]) stands for the set of functions that satisfy the Dirichlet boundary conditions and whose derivatives are in L^2([0,pi]). For generic nonlinearities f, C=\cup C_k decomposes into manifolds of codimension 1 in X. If f''0, the set C_j is shown to be non-empty if, and only if, -j^2 (the j-th eigenvalue of u -> u'') is in the range of f'. The critical components C_k are (topological) hyperplanes.Comment: 6 pages, no figure
    • …
    corecore