18 research outputs found

    Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates

    Get PDF
    Physical trapping of a hydrophobic liquid oil in a matrix of water-soluble biopolymers was achieved using a facile two-step process by first formulating a surfactant-free oil-in-water emulsion stabilized by biopolymers (a protein and a polysaccharide) followed by complete removal of the water phase (by either high- or low-temperature drying of the emulsion) resulting in structured solid systems containing a high concentration of liquid oil (above 97 wt %). The microstructure of these systems was revealed by confocal and cryo-scanning electron microscopy, and the effect of biopolymer concentrations on the consistency of emulsions as well as the dried product was evaluated using a combination of small-amplitude oscillatory shear rheometry and large deformation fracture studies. The oleogel prepared by shearing the dried product showed a high gel strength as well as a certain degree of thixotropic recovery even at high temperatures. Moreover, the reversibility of the process was demonstrated by shearing the dried product in the presence of water to obtain reconstituted emulsions with rheological properties comparable to those of the fresh emulsion

    Differential Gene Expression Patterns of EBV Infected EBNA-3A Positive and Negative Human B Lymphocytes

    Get PDF
    The genome of Epstein-Barr virus (EBV) encodes 86 proteins, but only a limited set is expressed in EBV–growth transformed B cells, termed lymphoblastoid cell lines (LCLs). These cells proliferate via the concerted action of EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), some of which are rate limiting to establish a stable homeostasis of growth promoting and anti-apoptotic activities. We show here that EBV mutants, which lack the EBNA-3A gene, are impaired but can still initiate cell cycle entry and proliferation of primary human B cells in contrast to an EBNA-2 deficient mutant virus. Surprisingly, and in contrast to previous reports, these viral mutants are attenuated in growth transformation assays but give rise to permanently growing EBNA-3A negative B cell lines which exhibit reduced proliferation rates and elevated levels of apoptosis. Expression profiles of EBNA-3A deficient LCLs are characterized by 129 down-regulated and 167 up-regulated genes, which are significantly enriched for genes involved in apoptotic processes or cell cycle progression like the tumor suppressor gene p16/INK4A, or might contribute to essential steps of the viral life cycle in the infected host. In addition, EBNA-3A cellular target genes remarkably overlap with previously identified targets of EBNA-2. This study comprises the first genome wide expression profiles of EBNA-3A target genes generated within the complex network of viral proteins of the growth transformed B cell and permits a more detailed understanding of EBNA-3A's function and contribution to viral pathogenesis

    The Neurotrophic Factor Neuroleukin Is 90-Percent Homologous With Phosphohexose Isomerase

    Full text link
    Neuroleukin (NLK) is a protein of relative molecular mass (M(r)) 56,000 (56K) secreted by denervated rat muscle and found in large amounts in muscle, brain, heart and kidneys. The protein is a neurotrophic factor for spinal and sensory neurons and a lymphokine product of lectin-stimulated T-cells. It also induces immunoglobulin secretion by human mononuclear cells. Molecular clones of NLK have been expressed in monkey COS cells and the product was shown to have the same biological and biochemical properties as the extracted protein. NLK is abundant in muscle, brain and kidney, but is active at concentrations of 10-9 to 10-11 M, similar to those for other polypeptide factors. We have cloned the gene for pig muscle phosphohexose isomerase (PHI) (EC 5.3.1.9) which catalyses the conversion of glucose-6-phosphate to fructose-6-phospate, an obligatory step in glycolysis, and determined its amino-acid sequence. Surprisingly, it is 90% homologous to the sequence of mouse neuroleukin
    corecore