23,901 research outputs found

    Confined coherence in quasi-one-dimensional metals

    Full text link
    We present a functional renormalization group calculation of the effect of strong interactions on the shape of the Fermi surface of weakly coupled metallic chains. In the regime where the bare interchain hopping is small, we show that scattering processes involving large momentum transfers perpendicular to the chains can completely destroy the warping of the true Fermi surface, leading to a confined state where the renormalized interchain hopping vanishes and a coherent motion perpendicular to the chains is impossible.Comment: 4 RevTex pages, 5 figures,final version as published by PR

    Quantum Faraday Effect in Double-Dot Aharonov-Bohm Ring

    Full text link
    We investigate Faraday's law of induction manifested in the quantum state of Aharonov-Bohm loops. In particular, we propose a flux-switching experiment for a double-dot AB ring to verify the phase shift induced by Faraday's law. We show that the induced {\em Faraday phase} is geometric and nontopological. Our study demonstrates that the relation between the local phases of a ring at different fluxes is not arbitrary but is instead determined by Faraday's inductive law, which is in strong contrast to the arbitrary local phase of an Aharonov-Bohm ring for a given flux.Comment: Submitted to Phys. Rev. Let

    The relation between accretion rates and the initial mass function in hydrodynamical simulations of star formation

    Get PDF
    We analyse a hydrodynamical simulation of star formation. Sink particles in the simulations which represent stars show episodic growth, which is presumably accretion from a core that can be regularly replenished in response to the fluctuating conditions in the local environment. The accretion rates follow m˙m2/3\dot{m} \propto m^{2/3}, as expected from accretion in a gas-dominated potential, but with substantial variations over-laid on this. The growth times follow an exponential distribution which is tapered at long times due to the finite length of the simulation. The initial collapse masses have an approximately lognormal distribution with already an onset of a power-law at large masses. The sink particle mass function can be reproduced with a non-linear stochastic process, with fluctuating accretion rates m2/3\propto m^{2/3}, a distribution of seed masses and a distribution of growth times. All three factors contribute equally to the form of the final sink mass function. We find that the upper power law tail of the IMF is unrelated to Bondi-Hoyle accretion.Comment: 13 pages, 13 figures, MNRAS accepte

    Experimental demonstration of Aharonov-Casher interference in a Josephson junction circuit

    Full text link
    A neutral quantum particle with magnetic moment encircling a static electric charge acquires a quantum mechanical phase (Aharonov-Casher effect). In superconducting electronics the neutral particle becomes a fluxon that moves around superconducting islands connected by Josephson junctions. The full understanding of this effect in systems of many junctions is crucial for the design of novel quantum circuits. Here we present measurements and quantitative analysis of fluxon interference patterns in a six Josephson junction chain. In this multi-junction circuit the fluxon can encircle any combination of charges on five superconducting islands, resulting in a complex pattern. We compare the experimental results with predictions of a simplified model that treats fluxons as independent excitations and with the results of the full diagonalization of the quantum problem. Our results demonstrate the accuracy of the fluxon interference description and the quantum coherence of these arrays

    Development of a simple, self-contained flight test data acquisition system

    Get PDF
    The flight test system described combines state-of-the-art microprocessor technology and high accuracy instrumentation with parameter identification technology which minimize data and flight time requirements. The system was designed to avoid permanent modifications of the test airplane and allow quick installation. It is capable of longitudinal and lateral-directional stability and control derivative estimation. Details of this system, calibration and flight test procedures, and the results of the Cessna 172 flight test program are presented. The system proved easy to install, simple to operate, and capable of accurate estimation of stability and control parameters in the Cessna 172 flight tests

    A strategic study of energy efficient and hybrid energy system options for a multi-family building in Korea

    Get PDF
    This study is to identify performance of energy efficiency measures and to match low-carbon and renewable energy (RE) systems supplies to demands in the context of multi-family residential buildings in Korea. An approach to the evaluation of the hybrid energy systems was investigated, including consideration of heat and power demand profiles, energy system combinations, building design options and strategies for matching supply to demand. The approach is encapsulated within an integrated software environment. Building energy simulation technology was exploited to make virtual energy use data. Low-carbon and RE system modelling techniques were used to predict energy supply profiles. A series of demand/supply matching-based analyses were made to identify the effect of energy efficient demand measures (e.g. roof-top gardens, innovative underfloor heating system) and evaluate the capacity utilisation factor from the hybrid energy systems. On the basis of performance information obtained at the conceptual design stage, the design team can pinpoint the most energy efficient demand/supply combination, and consequently, maximise the impact of hybrid energy systems adoption
    corecore