14 research outputs found

    ACSL6 Is Associated with the Number of Cigarettes Smoked and Its Expression Is Altered by Chronic Nicotine Exposure

    Get PDF
    Individuals with schizophrenia tend to be heavy smokers and are at high risk for tobacco dependence. However, the nature of the comorbidity is not entirely clear. We previously reported evidence for association of schizophrenia with SNPs and SNP haplotypes in a region of chromosome 5q containing the SPEC2, PDZ-GEF2 and ACSL6 genes. In this current study, analysis of the control subjects of the Molecular Genetics of Schizophrenia (MGS) sample showed similar pattern of association with number of cigarettes smoked per day (numCIG) for the same region. To further test if this locus is associated with tobacco smoking as measured by numCIG and FTND, we conducted replication and meta-analysis in 12 independent samples (n>16,000) for two markers in ACSL6 reported in our previous schizophrenia study. In the meta-analysis of the replication samples, we found that rs667437 and rs477084 were significantly associated with numCIG (p = 0.00038 and 0.00136 respectively) but not with FTND scores. We then used in vitro and in vivo techniques to test if nicotine exposure influences the expression of ACSL6 in brain. Primary cortical culture studies showed that chronic (5-day) exposure to nicotine stimulated ACSL6 mRNA expression. Fourteen days of nicotine administration via osmotic mini pump also increased ACSL6 protein levels in the prefrontal cortex and hippocampus of mice. These increases were suppressed by injection of the nicotinic receptor antagonist mecamylamine, suggesting that elevated expression of ACSL6 requires nicotinic receptor activation. These findings suggest that variations in the ACSL6 gene may contribute to the quantity of cigarettes smoked. The independent associations of this locus with schizophrenia and with numCIG in non-schizophrenic subjects suggest that this locus may be a common liability to both conditions

    Gene-set analysis shows association between FMRP targets and autism spectrum disorder

    No full text
    Autism spectrum disorder (ASD) is a heterogeneous group of disorders characterized by problems with social interaction, communication, and repetitive and restricted behavior. Despite its high heritability and the substantial progress made in elucidating genetic associations, the corresponding biological mechanisms are largely unknown. Our objective is to investigate the contribution of common genetic variation to biological pathways functionally involved in ASD. We conducted gene-set analyses to identify ASD-associated functional biological pathways using the statistical tools MAGMA and INRICH. Gene-set selection was based on previously reported associations with psychiatric disorders and resulted in testing of specific synaptic and glial sets, a glutamate pathway gene-set, mitochondrial gene-sets and gene-sets consisting of fragile X mental retardation protein (FMRP) targets. In total 32 gene-sets were tested. We used Psychiatric Genomics Consortium genome-wide association studies summary statistics of ASD. The study is based on the largest ASD sample to date (N=5305). We found one significantly associated gene-set consisting of FMRP-targeting transcripts (MAGMA: p corr.=0.014, INRICH: p corr.=0.031; all competitive P-values). The results indicate the involvement of FMRP-targeted transcripts in ASD in common genetic variation. This novel finding is in line with the literature as FMRP has been linked to fragile X syndrome, ASD and cognitive development in whole-exome sequencing and copy number variant studies. This gene-set has also been linked to Schizophrenia suggesting that FMRP-targeted transcripts might be involved in a general mechanism with shared genetic etiology between psychiatric disorders

    CNR1 gene is associated with high neuroticism and low agreeableness and interacts with recent negative life events to predict current depressive symptoms

    No full text
    Cannabinoid receptor 1 (CB1) gene (CNR1) knockout mice are prone to develop anhedonic and helpless behavior after chronic mild stress. In humans, the CB1 antagonist rimonabant increases the risk of depressed mood disorders and anxiety. These studies suggest the hypothesis that genetic variation in CB1 receptor function influences the risk of depression in humans in response to stressful life events. In a population sample (n=1269), we obtained questionnaire measures of personality (Big Five Inventory), depression and anxiety (Brief Symptom Inventory), and life events. The CNR1 gene was covered by 10 SNPs located throughout the gene to determine haplotypic association. Variations in the CNR1 gene were significantly associated with a high neuroticism and low agreeableness phenotype (explained variance 1.5 and 2.5%, respectively). Epistasis analysis of the SNPs showed that the previously reported functional 5' end of the CNR1 gene significantly interacts with the 3' end in these phenotypes. Furthermore, current depression scores significantly associated with CNR1 haplotypes but this effect diminished after covariation for recent life events, suggesting a gene x environment interaction. Indeed, rs7766029 showed highly significant interaction between recent negative life events and depression scores. The results represent the first evidence in humans that the CNR1 gene is a risk factor for depression--and probably also for co-morbid psychiatric conditions such as substance use disorders--through a high neuroticism and low agreeableness phenotype. This study also suggests that the CNR1 gene influences vulnerability to recent psychosocial adversity to produce current symptoms of depression

    Glial Cells in the Schizophrenia Puzzle: Angiotensin II Role

    No full text
    Schizophrenia is a neuropsychiatric disease with 1% worldwide prevalence and characterized by a deep distortion in thought and perception, cognitive dysfunction, and social behavioral deficits. After the discovery of the antipsychotic effects of chlorpromazine, a large body of evidence pointed out to the neurotransmission misbalance as the main factor in the development of this pathology. Nowadays, it is known that schizophrenia is related to a pluri-factorial etiopathogenesis where gene factors, neuroinflammation, and brain microenvironment?s alterations are taken into account as well. In this sense, glial cells (oligodendrocytes, astrocytes, and microglial cells) are essential pieces in brain microenvironment with crucial roles in synaptic establishment and function, neuroinflammation, and metabolic and ion homeostasis, among others. Currently, glial cells are the target of numerous researches on the race to puzzle out the schizophrenia etiopathology.Among the multiplicity of regulatory substances involved in glial cell functionality, it becomes outstanding the newly described roles for brain angiotensin II (Ang II). This neuropeptide, through its AT1 receptors (AT1-R), expressed in neurons and glial cells modulates brain homeostasis and several neurotransmission systems (dopaminergic, glutamatergic, and GABAergic) and has a pro-inflammatory role in pathological conditions. In this way, Ang II has been involved in cognition processes, stress responses, and mental disorders such as schizophrenia, addiction, Parkinson?s, and Alzheimer?s diseases.In this chapter, we aimed to summarize the role of the glial cells in the schizophrenia with a special reference to AT1-R involvement in this complex scenario.Fil: Occhieppo, Victoria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Basmadjian, Osvaldo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Marchese, Natalia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Rodríguez, Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Jaime, Andrea del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Herrera Lopez, Malena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Bregonzio Diaz, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; Argentin
    corecore