1,525 research outputs found

    A preliminary study on electrocatalytic reduction of CO2 using FAC-ReI(CO)3(4,4′-dimethyl-2,2′-bipyridyl)((E)-2-((3-amino-pyridin-4-ylimino)-methyl)-4,6-DI-tert-butylphenol))+ complex

    Get PDF
    Indexación: Scopus.Several research to explore the possible conversion of CO2 using rhenium(I) tricarbonyl complexes have been reported the last years. In the present work, we investigated a potential use of fac-Re(CO)3(4,4′-di-methyl-2,2′-bipyridyl)L+ complex (C2), where L is an electron-withdrawing ancillary ligands which present an intramolecular hydrogen bond (IHB), in a preliminary electrocatalytic reduction of CO2. The C2 complex was synthesized and characterized according to reported methods earlier. The cyclic voltammogram profle for the C2 complex were studied in dichloromethane under inert atmosphere, and it shows a typical behavior for an electrocatalytic process, the C2 complex illustrate the electrochemical reaction mechanism corresponds to an electrochemical-chemical-electrochemical pathway (ECE). Also, a Vitreous Carbon plate used as working electrode was employed and modifed by cycling the anodic region of C2 in CH2Cl2 which involve the oxidative redox response for the -NH2 and -OH groups. The voltammogram profle involve shows a polymeric deposit on the plate surface in a CO2 saturated solution (pH=7.0). A strong electrocatalytic discharge of current is obtained with a wave foot of -1.3 V showing that C2 have the potential to be used in electrocatalyst CO2 reduction. © 2017 Sociedad Chilena de Quimica. All Rights Reserved.https://scielo.conicyt.cl/pdf/jcchems/v62n4/0717-9324-jcchems-62-04-3765.pd

    Datasets for transcriptomics, q-proteomics and phenotype microarrays of polyphosphate metabolism mutants from Escherichia coli

    Get PDF
    Indexación: Scopus.Author acknowledges Fondecyt Grants 1120209, 1121170 and Anillo ACT-1107Here, we provide the dataset associated with our research article on the polyphosphate metabolism entitled, “Multi-level evaluation of Escherichia coli polyphosphate related mutants using global transcriptomic, proteomic and phenomic analyses”. By integrating different omics levels (transcriptome, proteome and phenome), we were able to study Escherichia coli polyphosphate mutant strains (Δppk1, Δppx, and Δppk1-ppx). We have compiled here all datasets from DNA microarrys, q-proteomic (Isotope-Coded Protein Labeling, ICPL) and phenomic (Phenotype microarray) raw data we have obtained in all polyP metabolism mutants.http://www.sciencedirect.com/science/article/pii/S2352340917300860?via%3Dihu

    Synthesis, characterization of a new carbonylated zirconium metallocene using a dichloro-zirconocene derived from partially alkylated s-indacene

    Get PDF
    Indexación: ScieloThis work describes the synthesis and characterization of new organometallic species, an unprecedented mononuclear zirconium complex bearing a tetraalkylated s-indacene ligand, and secondly, its respective dicarbonyl complex obtained by reduction with Mg/HgCl2. Theoretical calculations of these two compounds were carried out to gain further understanding of these novel molecular systems.http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072009000300014&lng=es&nrm=is

    Direct evidence for efficient ultrafast charge separation in epitaxial WS2_2/graphene heterostructure

    Full text link
    We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS2_2 and graphene. This heterostructure combines the benefits of a direct gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS2_2, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS2_2 layer. The resulting charge transfer state is found to have a lifetime of 1\sim1\,ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS2_2 and graphene bands as revealed by high resolution ARPES. In combination with spin-selective excitation using circularly polarized light the investigated WS2_2/graphene heterostructure might provide a new platform for efficient optical spin injection into graphene.Comment: 28 pages, 14 figure

    Band Structure Dynamics in Indium Wires

    Full text link
    One-dimensional Indium wires grown on Si(111) substrates, which are metallic at high temperatures, become insulating below 100\sim100 K due to the formation of a Charge Density Wave (CDW). The physics of this transition is not conventional and involves a multiband Peierls instability with strong interband coupling. This CDW ground state is readily destroyed with femtosecond laser pulses resulting in a light-induced insulator-to-metal phase transition. The current understanding of this transition remains incomplete, requiring measurements of the transient electronic structure to complement previous investigations of the lattice dynamics. Time- and angle-resolved photo\-emission spectroscopy with extreme ultra-violet radiation is applied to this end. We find that the transition from the insulating to the metallic band structure occurs within 660\sim660 fs that is a fraction of the amplitude mode period. The long life time of the transient state (>100>100 ps) is attributed to trapping in a metastable state in accordance with previous work.Comment: 14 pages, 7 figure
    corecore