22 research outputs found

    Quince (Cydonia oblonga) in vitro plant root formation through an automated temporary inmersion system, and its acclimation

    Get PDF
    Artículo científicoQuince (Cydonia oblonga) is a non-traditional fruit tree found in Costa Rica that has therapeutic and nutritional properties; however its slow growth and root formation prevents the production of a homogeneous population when using conventional farming techniques. Hence, the aim of this research project was to generate uniform plant material in a reduced time span using a temporary immersion bioreactor system (RITAS Ÿ). A semisolid rooting MS culture medium supplemented with 0.1 mg L-1 NAA; 0.3 mg L-1 IBA and 3% sucrose (pH 6.5), developed in the Centro de Investigación en Biotecnología (CIB), Instituto Tecnológico de Costa Rica (ITCR), in Cartago, was used as a reference medium. Four different variations in the sucrose concentration (1%, 2%, 3%, and 4%) were performed in liquid medium. Each trial was evaluated with in vitro plants which had been previously exposed to the culture medium of the corresponding treatments, in a stationary mode and for a 15 day long period, and with in vitro plants without any previous treatment (a total of eight treatments). The comparison of the root formation percentages evidenced the clear effect of sucrose concentration used, with the best results obtained when using the 2% sucrose trial with no pre-treatment (73.3%). The in vitro plants were acclimated in cylinders made out of peat, have previously been disinfected with fungicide, and placed in a humidity chamber at a 20.5°C average temperature and a 75,5% relative humidity for the establishment of weekly fertilizing cycles. The acclimation process generated an 80% survival rate, since several seedlings experienced stem strangulation caused by a fungal attack. The conidiophores identified through optical and scanning electron microscopy evidenced the presence of Cladosporium spp., which was controlled with carbendazim and iprodione fungicides

    Integrating Human-Centred Design Approach into Sustainable-Oriented 3D Printing Systems

    Get PDF
    Modern 3D printing systems have become pervasive and widely used both in professional and in informal contexts, including sustainable-oriented ones. However, the risk to create very effective but non-sustainable solutions is very high since 3D printing systems could potentially increase the environmental emergencies and the unsustainable growth. In the transition process toward sustainable ways of production and consumption, the so-called human factor still plays an important role in the achievement of sustainable-oriented actions; it drives the adoption of proper lifestyles that directly and indirectly influence the ways through which such technologies are used. Therefore, future Sustainable 3D Printing Systems should integrate the humans in the systems’ development. This study presents two important results: (a) it presents a set of interdisciplinary ‘Sustainable 3D Printing Systems’, which compose a promising sustainable-oriented scenario useful to support the transition processes toward sustainable designs and productions, and (b) it proposes a new strategy for the integration of human-centred aspects into Sustainable 3D Printing Systems, by combining insights from human-centred design approach

    Sustainable 3D Printing: Design Opportunities and Research Perspectives

    No full text
    As 3D Printing process, technologies and tools are rapidly becoming pervasive and used both in industrial and in non-industrial contexts, the risk to have new unsustainable printing processes and production’s behaviours is high and, potentially, can led to the increasing of environmental emergency (unsustainable growth). On the other hand, Design for Sustainability works, since late 80’s, on the mitigation of production’s environmental foot-print and, recently, on the development of socio-technical systems and distributed hybrid solutions empowering both environmental aspects and socio-economic ones. This paper investigates the new concept of Sustainable 3D Printing using recent Design for Sustainability’s research theories and design approaches, in order to evaluate, and later describes, promising design opportunities and research perspectives that can be used and taken into account, simultaneously, by designers, researchers, entrepreneurs and policymakers to support the societal transition toward sustainable ways of design, production and consumption
    corecore