653 research outputs found

    Effects of magnetism and doping on the electron-phonon coupling in BaFe2_{2}As2_{2}

    Full text link
    We calculate the effect of local magnetic moments on the electron-phonon coupling in BaFe2_{2}As2+δ_{2}+\delta using the density functional perturbation theory. We show that the magnetism enhances the total electron-phonon coupling by ∼50\sim 50%, up to λ≲0.35\lambda \lesssim 0.35, still not enough to explain the high critical temperature, but strong enough to have a non-negligible effect on superconductivity, for instance, by frustrating the coupling with spin fluctuations and inducing order parameter nodes. The enhancement comes mostly from a renormalization of the electron-phonon matrix elements. We also investigate, in the rigid band approximation, the effect of doping, and find that λ\lambda versus doping does not mirror the behavior of the density of states; while the latter decreases upon electron doping, the former does not, and even increases slightly.Comment: 4 pages, 3 figure

    Effect of dimensionality on the charge-density-wave in few-layers 2H-NbSe2_2

    Full text link
    We investigate the charge density wave (CDW) instability in single and double layers, as well as in the bulk 2H-NbSe2_{2}. We demonstrate that the density functional theory correctly describes the metallic CDW state in the bulk 2H-NbSe2_{2}. We predict that both mono- and bilayer NbSe2_{2} undergo a CDW instability. However, while in the bulk the instability occurs at a momentum qCDW≈2/3ΓM\mathbf{q}_{CDW}\approx{2/3}\mathbf{\Gamma M}, in free-standing layers it occurs at qCDW≈1/2ΓM\mathbf{q}_{CDW}\approx{1/2}\mathbf{\Gamma M}. Furthermore, while in the bulk the CDW leads to a metallic state, in a monolayer the ground state becomes semimetallic, in agreement with recent experimental data. We elucidate the key role that an enhancement of the electron-phonon matrix element at q≈qCDW\mathbf{q}\approx\mathbf{q}_{CDW} plays in forming the CDW ground state.Comment: 4 pages 5 figure

    Non-destructive distinction between geogenic and anthropogenic calcite by Raman spectroscopy combined with machine learning workflow

    Get PDF
    Here, we demonstrate, for the first time, the possibility of distinguishing between geogenic and anthropogenic calcite in a non-destructive and effective way. Geogenic calcite derives from natural sedimentary and metamorphic rocks whereas anthropogenic calcite is formed artificially due to the carbonation process in mortars and plaster lime binders. Currently, their distinction is a major unaddressed issue although it is crucial across several fields such as 14C dating of historical mortars to avoid contamination with carbonate aggregates, investigating the origins of pigments, and studying the origins of sediments, to name a few. In this paper, we address this unmet need combining high-resolution micro-Raman spectroscopy with data mining and machine learning methods. This approach provides an effective means of obtaining robust and representative Raman datasets from which samples’ origins can be effectively deduced; moreover, a distinction between sedimentary and metamorphic calcite has been also highlighted. The samples, chemically identical, exhibit systematic and reliable differences in Raman band positions, band shape and intensity, which are likely related to the degree of structural order and polarization effects

    Poisson equation and self-consistent periodical Anderson model

    Full text link
    We show that the formally exact expression for the free energy (with a non-relativistic Hamiltonian) for the correlated metal generates the Poisson equation within the saddle-point approximation for the electric potential, where the charge density automatically includes correlations. In this approximation the problem is reduced to the self-consistent periodical Anderson model (SCPAM). The parameter of the mixing interaction in this formulation have to be found self-consistently together with the correlated charge density. The factors, calculated by Irkhin, for the mixing interaction, which reflect the structure of the many-electron states of the \f-ion involved, arise automatically in this formulation and are quite sensitive to the specific element we are interested in. We also discuss the definitions of the mixing interaction for the mapping from ab initio to model calculations.Comment: 25 pages, no figure

    Effects of phase transitions in devices actuated by the electromagnetic vacuum force

    Full text link
    We study the influence of the electromagnetic vacuum force on the behaviour of a model device based on materials, like germanium tellurides, that undergo fast and reversible metal-insulator transitions on passing from the crystalline to the amorphous phase. The calculations are performed at finite temperature and fully accounting for the behaviour of the material dielectric functions. The results show that the transition can be exploited to extend the distance and energy ranges under which the device can be operated without undergoing stiction phenomena. We discuss the approximation involved in adopting the Casimir expression in simulating nano- and micro- devices at finite temperature

    Mortar Characterization of Historical Masonry Damaged by Riverbank Failure: The Case of Lungarno Torrigiani (Florence)

    Get PDF
    The research of structural masonry associated with geo-hydrological hazards in Cultural Heritage is a multidisciplinary issue, requiring consideration of several aspects including the characterization of used materials. On 25 May 2016, loss of water from the subterranean pipes and of the aqueduct caused an Arno riverbank failure damaging a 100 m long portion of the historical embankment wall of Lungarno Torrigiani in Florence. The historical masonry was built from 1854–1855 by Giuseppe Poggi and represents a historical example of an engineering approach to riverbank construction, composed of a scarp massive wall on foundation piles, with a rubble masonry internal core. The failure event caused only a cusp-shaped deformation to the wall without any shattering or toppling. A complete characterization of the mortars was performed to identify the technologies, raw materials and state of conservation in order to understand why the wall has not collapsed. Indeed, the mortars utilized influenced the structural behavior of masonry, and their characterization was fundamental to improve the knowledge of mechanical properties of civil architectural heritage walls. Therefore, the aim of this research was to analyze the mortars from mineralogical–petrographic, physical and mechanical points of view, to evaluate the contribution of the materials to damage events. Moreover, the results of this study helped to identify compatible project solutions for the installation of hydraulically and statically functional structures to contain the riverbank

    Tooth wear as a means to quantify intra-specific variations in diet and chewing movements

    No full text
    9 pagesInternational audienceIn mammals, tooth function, and its efficiency, depends both on the mechanical properties of the foodand on chewing dynamics. These aspects have rarely been studied in combination and/or at the intraspecificlevel. Here we applied 3D dental surface texture analysis to a sample of field voles (Microtusagrestis) trapped from Finnish Lapland at different seasons and localities to test for inter-populationvariations. We also explored intra-individual variation in chewing dynamics by analysing two facetson the second upper molars. Our results confirm that the two localities have similar environments andthat the voles feed on the same items there. On the other hand, the texture data suggest that diets areseasonally variable, probably due to varying concentrations of abrasives. Lastly, the textures on thebuccal facets are more isotropic and their direction deviates more from the mesial chewing directionthan the lingual facets. We interpret these results as reflecting food, rather than chewing, movements,where food particles are more guided on the lingual side of the molars. This has implications for theapplication of dental microwear analysis to fossils: only homologous facets can be compared, evenwhen the molar row seems to constitute a functional unit

    Monitoring and evaluation of sandstone decay adopting non-destructive techniques: On-site application on building stones

    Get PDF
    This paper focuses on the characterization approach to evaluate the decay state of Pietra Serena of historic buildings in Florence (Italy). Pietra Serena is a Florentine sandstone largely used in the city especially during the Renaissance; it is a symbol of cultural heritage of Florence and constitutes a large part of the city center, which was named a World Heritage Site by UNESCO in 1982. Unfortunately, many environmental factors negatively affect the stone, increasing damage and the danger of falling material. Any detachment of stone fragments, in addition to constitute a loss in cultural heritage, can be dangerous for citizens and the many tourists that visit the city. The use of non-destructive techniques (NDTs) as ultrasonic and Schmidt hammer tests can quantitatively define some mechanical properties and help to monitor the decay degree of building stone. In this study, the NDTs were combined with mineralogical, petrographical, chemical and physical analyses to investigate the stone materials, in order to correlate their features with the characteristics of the different artefacts in Pietra Serena. Correlations between the NDTs results and the compositional characteristics of the on-site stone were carried out; such discussion allows to identify zones of weakness and dangerous unstable elements

    Testosterone induction of prostaglandin-endoperoxide synthase 2 expression and prostaglandin F 2α production in hamster Leydig cells

    Get PDF
    We have previously observed expression of prostaglandin-endoperoxide synthase 2 (PTGS2), the key enzyme in the biosynthesis of prostaglandins (PGs), in reproductively active Syrian hamster Leydig cells, and reported an inhibitory role of PGF 2α on hamster testicular steroidogenesis. In this study, we further investigated PTGS2 expression in hamster Leydig cells during sexual development and photoperiodic gonadal regression. Since PTGS2 is mostly expressed in pubertal and reproductively active adult hamsters with high circulating levels of LH and androgens, we studied the role of these hormones in the regulation/maintenance of testicular PTGS2/PGF 2α. In active hamster Leydig cells, LH/hCG and testosterone induced PTGS2 and PGF 2α production, and their actions were abolished by the antiandrogen bicalutamide (Bi). These results indicate that LH does not exert a direct effect on PG synthesis. Testosterone also stimulated phosphorylation of the mitogen-activated protein kinase isoforms 3/1 (MAPK3/1) within minutes and hours, but the testosterone metabolite dihydrotestosterone had no effect on PTGS2 and MAPK3/1. Because Bi and U0126, an inhibitor of the MAP kinase kinases 1 and 2 (MAP2K1/2), abolished testosterone actions on MAPK3/1 and PTGS2, our studies suggest that testosterone directly induces PTGS2/PGF 2α in hamster Leydig cells via androgen receptors and a non-classical mechanism that involves MAPK3/1 activation. Since PGF 2α inhibits testosterone production, it might imply the existence of a regulatory loop that is setting a brake on steroidogenesis. Thus, the androgen environment might be crucial for the regulation of testicular PG production at least during sexual development and photoperiodic variations in hamsters.Instituto Multidisciplinario de Biología Celula

    Testosterone induction of prostaglandin-endoperoxide synthase 2 expression and prostaglandin F 2α production in hamster Leydig cells

    Get PDF
    We have previously observed expression of prostaglandin-endoperoxide synthase 2 (PTGS2), the key enzyme in the biosynthesis of prostaglandins (PGs), in reproductively active Syrian hamster Leydig cells, and reported an inhibitory role of PGF 2α on hamster testicular steroidogenesis. In this study, we further investigated PTGS2 expression in hamster Leydig cells during sexual development and photoperiodic gonadal regression. Since PTGS2 is mostly expressed in pubertal and reproductively active adult hamsters with high circulating levels of LH and androgens, we studied the role of these hormones in the regulation/maintenance of testicular PTGS2/PGF 2α. In active hamster Leydig cells, LH/hCG and testosterone induced PTGS2 and PGF 2α production, and their actions were abolished by the antiandrogen bicalutamide (Bi). These results indicate that LH does not exert a direct effect on PG synthesis. Testosterone also stimulated phosphorylation of the mitogen-activated protein kinase isoforms 3/1 (MAPK3/1) within minutes and hours, but the testosterone metabolite dihydrotestosterone had no effect on PTGS2 and MAPK3/1. Because Bi and U0126, an inhibitor of the MAP kinase kinases 1 and 2 (MAP2K1/2), abolished testosterone actions on MAPK3/1 and PTGS2, our studies suggest that testosterone directly induces PTGS2/PGF 2α in hamster Leydig cells via androgen receptors and a non-classical mechanism that involves MAPK3/1 activation. Since PGF 2α inhibits testosterone production, it might imply the existence of a regulatory loop that is setting a brake on steroidogenesis. Thus, the androgen environment might be crucial for the regulation of testicular PG production at least during sexual development and photoperiodic variations in hamsters.Instituto Multidisciplinario de Biología Celula
    • …
    corecore