111 research outputs found

    Towards Smart Sensing Systems: A New Approach to Environmental Monitoring Systems by Using LoRaWAN

    Get PDF
    The proliferation of monitoring in unpredictable environments has aided the world in solving challenges that were previously thought to be insurmountable. Drastic advancement has been pinpointed in the way we live, work, and play; however, the data odyssey has yet started. From sensing to monitoring, the endless possibility enabled by LoRa, the long-range low power solution has made its mark on the technological world. With the adoption of the LoRaWAN, the long-range low power wide area network has appeared in existence to cope with the constraints associated with the Internet of Things (IoT) infrastructure. This paper presents a practical experiment for sensing the environmental condition using the LoRaWAN solution. The proposed work allows the users to check the environmental effects (temperature, and humidity) online. Furthermore, the signal behavior has been recorded and cross-verified by using MATLAB software implementation

    InGaAs-based high-performance p-i-n photodiodes

    Get PDF
    Cataloged from PDF version of article.In this letter, we have designed, fabricated, and characterized high-speed and high-efficiency InGaAs-based p-i-n photodetectors with a resonant cavity enhanced structure. The devices were fabricated by a microwave-compatible process. By using a postprocess recess etch, we tuned the resonance wavelength from 1605 to 1558 nm while keeping the peak efficiencies above 60%. The maximum quantum efficiency was 66% at 1572 nm which was in good agreement with our theoretical calculations. The photodiode had a linear response up to 6-mW optical power, where we obtained 5-mA photocurrent at 3-V reverse bias. The photodetector had a temporal response of 16 ps at 7-V bias. After system response deconvolution, the 3-dB bandwidth of the device was 31 GHz, which corresponds to a bandwidth-efficiency product of 20 GHz

    Enhancing Cyber Security of LoRaWAN Gateways under Adversarial Attacks

    Get PDF
    The Internet of Things (IoT) has disrupted the IT landscape drastically, and Long Range Wide Area Network (LoRaWAN) is one specification that enables these IoT devices to have access to the Internet. Former security analyses have suggested that the gateways in LoRaWAN in their current state are susceptible to a wide variety of malicious attacks, which can be notoriously difficult to mitigate since gateways are seen as obedient relays by design. These attacks, if not addressed, can cause malfunctions and loss of efficiency in the network traffic. As a solution to this unique problem, this paper presents a novel certificate authentication technique that enhances the cyber security of gateways in the LoRaWAN network. The proposed technique considers a public key infrastructure (PKI) solution that considers a two-tier certificate authority (CA) setup, such as a root-CA and intermediate-CA. This solution is promising, as the simulation results validate that about 66.67% of the packets that are arriving from an illegitimate gateway (GW) are discarded in our implemented secure and reliable solution

    Intrusion Detection in Industrial Networks via Data Streaming

    Get PDF
    Given the increasing threat surface of industrial networks due to distributed, Internet-of-Things (IoT) based system architectures, detecting intrusions in\ua0 Industrial IoT (IIoT) systems is all the more important, due to the safety implications of potential threats. The continuously generated data in such systems form both a challenge but also a possibility: data volumes/rates are high and require processing and communication capacity but they contain information useful for system operation and for detection of unwanted situations.In this chapter we explain that\ua0 stream processing (a.k.a. data streaming) is an emerging useful approach both for general applications and for intrusion detection in particular, especially since it can enable data analysis to be carried out in the continuum of edge-fog-cloud distributed architectures of industrial networks, thus reducing communication latency and gradually filtering and aggregating data volumes. We argue that usefulness stems also due to\ua0 facilitating provisioning of agile responses, i.e. due to potentially smaller latency for intrusion detection and hence also improved possibilities for intrusion mitigation. In the chapter we outline architectural features of IIoT networks, potential threats and examples of state-of-the art intrusion detection methodologies. Moreover, we give an overview of how leveraging distributed and parallel execution of streaming applications in industrial setups can influence the possibilities of protecting these systems. In these contexts, we give examples using electricity networks (a.k.a. Smart Grid systems).We conclude that future industrial networks, especially their Intrusion Detection Systems (IDSs), should take advantage of data streaming concept by decoupling semantics from the deployment

    High-speed 1.55 μm operation of low-temperature-grown GaAs-based resonant-cavity-enhanced p–i–n photodiodes

    Get PDF
    We report the design, growth, fabrication, and characterization of GaAs-based high-speed p–i–n photodiodes operating at 1.55 μm. A low-temperature-grown GaAs (LT-GaAs) layer was used as the absorption layer and the photoresponse was selectively enhanced at 1.55 μm using a resonant-cavity-detector structure. The bottom mirror of the resonant cavity was formed by a highly reflecting 15-pair GaAs/AlAs Bragg mirror. Molecular-beam epitaxy was used for wafer growth, where the active LT-GaAs layer was grown at a substrate temperature of 200 °C. The fabricated devices exhibited a resonance around 1548 nm. When compared to the efficiency of a conventional single-pass detector, an enhancement factor of 7.5 was achieved. Temporal pulse-response measurements were carried out at 1.55 μm. Fast pulse responses with 30 ps pulse-width and a corresponding 3 dB bandwidth of 11.2 GHz was measured.This work was supported by NATO Grant No. SfP971970, Turkish Department of Defense Grant No.KOBRA-001, Thales JP8.04, CAM 07N/0059/2002 and ‘‘NANOSELF’’ TIC2002-04096-C03-03. E.O. acknowledges partial support received from Turkish Academy of Sciences.Peer reviewe

    ITO-schottky photodiodes for high-performance detection in the UV-IR spectrum

    Get PDF
    High-performance vertically illuminated Schottky photodiodes with indium-tin-oxide (ITO) Schottky layers were designed, fabricated, and tested. Ternary and quarternary III-V material systems (AlGaN-GaN, AlGaAs-GaAs, InAlGaAs-InP, and InGaAsP-InP) were utilized for detection in the ultraviolet (UV) (λ < 400 nm), near-IR (λ ∼ 850 nm), and IR (λ ∼ 1550 nm) spectrum. The material properties of thin ITO films were characterized. Using resonant-cavity-enhanced (RCE) detector structures, improved efficiency performance was achieved. Current-voltage, spectral responsivity, and high-speed measurements were carried out on the fabricated ITO-Schottky devices. The device performances obtained with different material systems are compared

    ITO-Schottky Photodiodes for High-Performance Detection in the UV–IR Spectrum

    Full text link

    High-speed 1.55 μm operation of low-temperature-grown GaAs-based resonant-cavity-enhanced p-i-n photodiodes

    Get PDF
    The 1.55 μm high-speed operation of GaAs-based p-i-n photodiodes was demonstrated and their design, growth and fabrication were discussed. A resonant-cavity-detector structure was used to selectively enhance the photoresponse at 1.55 μm. The bottom mirror of the resonant cavity was formed by a highly reflecting 15-pair GaAs/AlAs Bragg mirror and molecular-beam epitaxy was used for wafer growth. It was found that the fabricated devices exhibited a resonance of around 1548 nm and an enhancement factor of 7.5 was achieved when compared to the efficiency of a single-pass detector

    Challenges of Misbehavior Detection in Industrial Wireless Networks

    Get PDF
    In recent years, wireless technologies are increasingly adopted in many application domains that were either unconnected before or exclusively used cable networks. This paradigm shift towards - often ad-hoc - wireless communication has led to significant benefits in terms of flexibility and mobility. Alongside with these benefits, however, arise new attack vectors, which cannot be mitigated by traditional security measures. Hence, mechanisms that are orthogonal to cryptographic security techniques are necessary in order to detect adversaries. In traditional networks, such mechanisms are subsumed under the term "intrusion detection system" and many proposals have been implemented for different application domains. More recently, the term "misbehavior detection" has been coined to encompass detection mechanisms especially for attacks in wireless networks. In this paper, we use industrial wireless networks as an exemplary application domain to discuss new directions and future challenges in detecting insider attacks. To that end, we review existing work on intrusion detection in mobile ad-hoc networks. We focus on physical-layer-based detection mechanisms as these are a particularly interesting research direction that had not been reasonable before widespread use of wireless technology.Peer Reviewe
    • …
    corecore