6 research outputs found

    The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world

    Get PDF
    Biotechnology has empirically established that it is easier to construct and evaluate variant genes and proteins than to account for the emergence and function of wild-type macromolecules. Systematizing this constructive approach, synthetic biology now promises to infer and assemble entirely novel genomes, cells and ecosystems. It is argued here that the theoretical and computational tools needed for this endeavor are missing altogether. However, such tools may not be required for diversifying organisms at the basic level of their chemical constitution by adding, substituting or removing elements and molecular components through directed evolution under selection. Most importantly, chemical diversification of life forms could be designed to block metabolic cross-feed and genetic cross-talk between synthetic and wild species and hence protect natural habitats and human health through novel types of containment

    Real-world EGFR testing practices for non-small-cell lung cancer by thoracic pathology laboratories across Europe

    Get PDF
    Background: Testing for epidermal growth factor receptor (EGFR) mutations is an essential recommendation in guidelines for metastatic non-squamous non-small-cell lung cancer, and is considered mandatory in European countries. However, in practice, challenges are often faced when carrying out routine biomarker testing, including access to testing, inadequate tissue samples and long turnaround times (TATs). Materials and methods: To evaluate the real-world EGFR testing practices of European pathology laboratories, an online survey was set up and validated by the Pulmonary Pathology Working Group of the European Society of Pathology and distributed to 64 expert testing laboratories. The retrospective survey focussed on laboratory organisation and daily EGFR testing practice of pathologists and molecular biologists between 2018 and 2021. Results: TATs varied greatly both between and within countries. These discrepancies may be partly due to reflex testing practices, as 20.8% of laboratories carried out EGFR testing only at the request of the clinician. Many laboratories across Europe still favour single-test sequencing as a primary method of EGFR mutation identification; 32.7% indicated that they only used targeted techniques and 45.1% used single-gene testing followed by next-generation sequencing (NGS), depending on the case. Reported testing rates were consistent over time with no significant decrease in the number of EGFR tests carried out in 2020, despite the increased pressure faced by testing facilities during the COVID-19 pandemic. ISO 15189 accreditation was reported by 42.0% of molecular biology laboratories for single-test sequencing, and by 42.3% for NGS. 92.5% of laboratories indicated they regularly participate in an external quality assessment scheme. Conclusions: These results highlight the strong heterogeneity of EGFR testing that still occurs within thoracic pathology and molecular biology laboratories across Europe. Even among expert testing facilities there is variability in testing capabilities, TAT, reflex testing practice and laboratory accreditation, stressing the need to harmonise reimbursement technologies and decision-making algorithms in Europe
    corecore