1,181 research outputs found

    Levy flights and Levy -Schroedinger semigroups

    Full text link
    We analyze two different confining mechanisms for L\'{e}vy flights in the presence of external potentials. One of them is due to a conservative force in the corresponding Langevin equation. Another is implemented by Levy-Schroedinger semigroups which induce so-called topological Levy processes (Levy flights with locally modified jump rates in the master equation). Given a stationary probability function (pdf) associated with the Langevin-based fractional Fokker-Planck equation, we demonstrate that generically there exists a topological L\'{e}vy process with the very same invariant pdf and in the reverse.Comment: To appear in Cent. Eur. J. Phys. (2010

    Effective DBHF Method for Asymmetric Nuclear Matter and Finite Nuclei

    Full text link
    A new decomposition of the Dirac structure of nucleon self-energies in the Dirac Brueckner-Hartree-Fock (DBHF) approach is adopted to investigate the equation of state for asymmetric nuclear matter. The effective coupling constants of σ\sigma , ω\omega , δ\delta and ρ\rho mesons with a density dependence in the relativistic mean field approach are deduced by reproducing the nucleon self-energy resulting from the DBHF at each density for symmetric and asymmetric nuclear matter. With these couplings the properties of finite nuclei are investigated. The agreement of charge radii and binding energies of finite nuclei with the experimental data are improved simultaneously in comparison with the projection method. It seems that the properties of finite nuclei are sensitive to the scheme used for the DBHF self-energy extraction. We may conclude that the properties of the asymmetric nuclear matter and finite nuclei could be well described by the new decomposition approach of the G matrix.Comment: 16 pages, 5 figure

    Patterns of Individual Shopping Behavior

    Get PDF
    Much of economic theory is built on observations of aggregate, rather than individual, behavior. Here, we present novel findings on human shopping patterns at the resolution of a single purchase. Our results suggest that much of our seemingly elective activity is actually driven by simple routines. While the interleaving of shopping events creates randomness at the small scale, on the whole consumer behavior is largely predictable. We also examine income-dependent differences in how people shop, and find that wealthy individuals are more likely to bundle shopping trips. These results validate previous work on mobility from cell phone data, while describing the unpredictability of behavior at higher resolution.Comment: 4 pages, 5 figure

    On the isospin dependence of the mean spin-orbit field in nuclei

    Get PDF
    By the use of the latest experimental data on the spectra of 133^{133}Sb and 131^{131}Sn and on the analysis of properties of other odd nuclei adjacent to doubly magic closed shells the isospin dependence of a mean spin-orbit potential is defined. Such a dependence received the explanation in the framework of different theoretical approaches.Comment: 52 pages, Revtex, no figure

    Relativistic Brueckner-Hartree-Fock calculations with explicit intermediate negative energy states

    Get PDF
    In a relativistic Brueckner-Hartree-Fock calculation we include explicit negative-energy states in the two-body propagator. This is achieved by using the Gross spectator-equation, modified by medium effects. Qualitatively our results compare well with other RBHF calculations. In some details significant differences occur, e.g, our equation of state is stiffer and the momentum dependence of the self-energy components is stronger than found in a reference calculation without intermediate negative energy states.Comment: 13 pages Revtex, 5 figures included seperatel

    Time Evolution within a Comoving Window: Scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains

    Full text link
    We present a modification of Matrix Product State time evolution to simulate the propagation of signal fronts on infinite one-dimensional systems. We restrict the calculation to a window moving along with a signal, which by the Lieb-Robinson bound is contained within a light cone. Signal fronts can be studied unperturbed and with high precision for much longer times than on finite systems. Entanglement inside the window is naturally small, greatly lowering computational effort. We investigate the time evolution of the transverse field Ising (TFI) model and of the S=1/2 XXZ antiferromagnet in their symmetry broken phases after several different local quantum quenches. In both models, we observe distinct magnetization plateaus at the signal front for very large times, resembling those previously observed for the particle density of tight binding (TB) fermions. We show that the normalized difference to the magnetization of the ground state exhibits similar scaling behaviour as the density of TB fermions. In the XXZ model there is an additional internal structure of the signal front due to pairing, and wider plateaus with tight binding scaling exponents for the normalized excess magnetization. We also observe parameter dependent interaction effects between individual plateaus, resulting in a slight spatial compression of the plateau widths. In the TFI model, we additionally find that for an initial Jordan-Wigner domain wall state, the complete time evolution of the normalized excess longitudinal magnetization agrees exactly with the particle density of TB fermions.Comment: 10 pages with 5 figures. Appendix with 23 pages, 13 figures and 4 tables. Largely extended and improved versio

    A Dirac-Hartree-Bogoliubov approximation for finite nuclei

    Get PDF
    We develop a complete Dirac-Hartree-Fock-Bogoliubov approximation to the ground state wave function and energy of finite nuclei. We apply it to spin-zero proton-proton and neutron-neutron pairing within the Dirac-Hartree-Bogoliubov approximation (we neglect the Fock term), using a zero-range approximation to the relativistic pairing tensor. We study the effects of the pairing on the properties of the even-even nuclei of the isotopic chains of Ca, Ni and Sn (spherical) and Kr and Sr (deformed), as well as the NN=28 isotonic chain, and compare our results with experimental data and with other recent calculations.Comment: 43 pages, RevTex, 13 figure

    CSF Protein Level of Neurotransmitter Secretion, Synaptic Plasticity, and Autophagy in PD and DLB

    Get PDF
    BACKGROUND: Molecular pathways associated with α-synuclein proteostasis have been detected in genetic studies and in cell models and include autophagy, ubiquitin-proteasome system, mitochondrial homeostasis, and synaptic plasticity. However, we lack biomarkers that are representative for these pathways in human biofluids. OBJECTIVE: The objective of this study was to evaluate CSF protein profiles of pathways related to α-synuclein proteostasis. METHODS: We assessed CSF protein profiles associated with neurotransmitter secretion, synapse plasticity, and autophagy in 2 monocentric cohorts with α-synucleinopathy (385 PD patients and 67 DLB patients). We included 80 PD patients and 17 DLB patients with variants in the glucocerebrosidase gene to serve as proxy for accelerated α-synuclein pathology with pronounced clinical trajectories. RESULTS: (1) Proteins associated with neurotransmitter secretion, synaptic plasticity, and endolysosomal autophagy were lower in PD and DLB patients compared with healthy controls. (2) These patterns were more pronounced in DLB than in PD patients, accentuated by GBA variant status in both entities. (3) CSF levels of these proteins were positively associated with CSF levels of total α-synuclein, with lower levels of proteostasis proteins related to lower levels of total α-synuclein. (4) These findings could be confirmed longitudinally. PD patients with low CSF profiles of proteostasis proteins showed lower CSF levels of α-synuclein longitudinally compared with PD patients with a normal proteostasis profile. CONCLUSION: CSF proteins associated with neurotransmitter secretion, synaptic plasticity, and endolysosomal autophagy might serve as biomarkers related to α-synuclein proteostasis in PD and DLB

    Two-dimensional SIR epidemics with long range infection

    Full text link
    We extend a recent study of susceptible-infected-removed epidemic processes with long range infection (referred to as I in the following) from 1-dimensional lattices to lattices in two dimensions. As in I we use hashing to simulate very large lattices for which finite size effects can be neglected, in spite of the assumed power law p(x)xσ2p({\bf x})\sim |{\bf x}|^{-\sigma-2} for the probability that a site can infect another site a distance vector x{\bf x} apart. As in I we present detailed results for the critical case, for the supercritical case with σ=2\sigma = 2, and for the supercritical case with 0<σ<20< \sigma < 2. For the latter we verify the stretched exponential growth of the infected cluster with time predicted by M. Biskup. For σ=2\sigma=2 we find generic power laws with σ\sigma-dependent exponents in the supercritical phase, but no Kosterlitz-Thouless (KT) like critical point as in 1-d. Instead of diverging exponentially with the distance from the critical point, the correlation length increases with an inverse power, as in an ordinary critical point. Finally we study the dependence of the critical exponents on σ\sigma in the regime 0<σ<20<\sigma <2, and compare with field theoretic predictions. In particular we discuss in detail whether the critical behavior for σ\sigma slightly less than 2 is in the short range universality class, as conjectured recently by F. Linder {\it et al.}. As in I we also consider a modified version of the model where only some of the contacts are long range, the others being between nearest neighbors. If the number of the latter reaches the percolation threshold, the critical behavior is changed but the supercritical behavior stays qualitatively the same.Comment: 14 pages, including 29 figure
    corecore