236 research outputs found

    A Geometric Tension Dynamics Model of Epithelial Convergent Extension

    Full text link
    Epithelial tissue elongation by convergent extension is a key motif of animal morphogenesis. On a coarse scale, cell motion resembles laminar fluid flow; yet in contrast to a fluid, epithelial cells adhere to each other and maintain the tissue layer under actively generated internal tension. To resolve this apparent paradox, we formulate a model in which tissue flow occurs through adiabatic remodelling of the cellular force balance causing local cell rearrangement. We propose that the gradual shifting of the force balance is caused by positive feedback on myosin-generated cytoskeletal tension. Shifting force balance within a tension network causes active T1s oriented by the global anisotropy of tension. Rigidity of cells against shape changes converts the oriented internal rearrangements into net tissue deformation. Strikingly, we find that the total amount of tissue extension depends on the initial magnitude of anisotropy and on cellular packing order. T1s degrade this order so that tissue flow is self-limiting. We explain these findings by showing that coordination of T1s depends on coherence in local tension configurations, quantified by a certain order parameter in tension space. Our model reproduces the salient tissue- and cell-scale features of germ band elongation during Drosophila gastrulation, in particular the slowdown of tissue flow after approximately twofold extension concomitant with a loss of order in tension configurations. This suggests local cell geometry contains morphogenetic information and yields predictions testable in future experiments. Furthermore, our focus on defining biologically controlled active tension dynamics on the manifold of force-balanced states may provide a general approach to the description of morphogenetic flow.Comment: 44 pages, 19 figure

    Fluctuation-Facilitated Charge Migration along DNA

    Full text link
    We propose a model Hamiltonian for charge transfer along the DNA double helix with temperature driven fluctuations in the base pair positions acting as the rate limiting factor for charge transfer between neighboring base pairs. We compare the predictions of the model with the recent work of J.K. Barton and A.H. Zewail (Proc.Natl.Acad.Sci.USA, {\bf 96}, 6014 (1999)) on the unusual two-stage charge transfer of DNA.Comment: 4 pages, 2 figure

    Managing groundwater supplies subject to drought: perspectives on current status and future priorities from England (UK)

    Get PDF
    Effective management of groundwater resources during drought is essential. How is groundwater currently managed during droughts, and in the face of environmental change, what should be the future priorities? Four themes are explored, from the perspective of groundwater management in England (UK): (1) integration of drought definitions; (2) enhanced fundamental monitoring; (3) integrated modelling of groundwater in the water cycle; and (4) better information sharing. Whilst these themes are considered in the context of England, globally, they are relevant wherever groundwater is affected by drought

    Lessons about botulinum toxin A therapy from cervical dystonia patients drawing the course of disease: a pilot study

    Get PDF
    AIM OF THE STUDY: To compare the course of severity of cervical dystonia (CD) before and after long-term botulinum toxin (BoNT) therapy to detect indicators for a good or poor clinical outcome. PATIENTS AND METHODS: A total of 74 outpatients with idiopathic CD who were continuously treated with BoNT and who had received at least three injections were consecutively recruited. Patients had to draw the course of severity of CD from the onset of symptoms until the onset of BoNT therapy (CoDB graph), and from the onset of BoNT therapy until the day of recruitment (CoDA graph) when they received their last BoNT injection. Mean duration of treatment was 9.6 years. Three main types of CoDB and four main types of CoDA graphs could be distinguished. The demographic and treatment-related data of the patients were extracted from the patients' charts. RESULTS: The best outcome was observed in those patients who had experienced a clear, rapid response in the beginning. These patients had been treated with the lowest doses and with a low number of BoNT preparation switches. The worst outcome was observed in those 17 patients who had drawn a good initial improvement, followed by a secondary worsening. These secondary nonresponders had been treated with the highest initial and actual doses and with frequent BoNT preparation switches. A total of 12 patients were primary nonresponders and did not experience any improvement at all. No relation between the CoDB and CoDA graphs could be detected. Primary and secondary nonresponses were observed for all three CoDB types. The use of initial high doses as a relevant risk factor for the later development of a secondary nonresponse was confirmed. CONCLUSIONS: Patients' drawings of their course of disease severity helps to easily detect "difficult to treat" primary and secondary nonresponders to BoNT on the one hand, but also to detect "golden responders" on the other hand

    TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network

    Full text link
    Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs). In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM) RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood-testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC) and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood-testis barrier

    No Evidence of Persisting Unrepaired Nuclear DNA Single Strand Breaks in Distinct Types of Cells in the Brain, Kidney, and Liver of Adult Mice after Continuous Eight-Week 50 Hz Magnetic Field Exposure with Flux Density of 0.1 mT or 1.0 mT

    Get PDF
    BACKGROUND: It has been hypothesized in the literature that exposure to extremely low frequency electromagnetic fields (50 or 60 Hz) may lead to human health effects such as childhood leukemia or brain tumors. In a previous study investigating multiple types of cells from brain and kidney of the mouse (Acta Neuropathologica 2004; 107: 257-264), we found increased unrepaired nuclear DNA single strand breaks (nDNA SSB) only in epithelial cells of the choroid plexus in the brain using autoradiographic methods after a continuous eight-week 50 Hz magnetic field (MF) exposure of adult mice with flux density of 1.5 mT. METHODS: In the present study we tested the hypothesis that MF exposure with lower flux densities (0.1 mT, i.e., the actual exposure limit for the population in most European countries, and 1.0 mT) shows similar results to those in the previous study. Experiments and data analysis were carried out in a similar way as in our previous study. RESULTS: Continuous eight-week 50 Hz MF exposure with 0.1 mT or 1.0 mT did not result in increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice. MF exposure with 1.0 mT led to reduced unscheduled DNA synthesis (UDS) in epithelial cells in the choroid plexus of the fourth ventricle in the brain (EC-CP) and epithelial cells of the cortical collecting duct in the kidney, as well as to reduced mtDNA synthesis in neurons of the caudate nucleus in the brain and in EC-CP. CONCLUSION: No evidence was found for increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT

    The influence of age, gender and socio-economic status on multimorbidity patterns in primary care. first results from the multicare cohort study

    Get PDF
    Background: Multimorbidity is a phenomenon with high burden and high prevalence in the elderly. Our previous research has shown that multimorbidity can be divided into the multimorbidity patterns of 1) anxiety, depression, somatoform disorders (ADS) and pain, and 2) cardiovascular and metabolic disorders. However, it is not yet known, how these patterns are influenced by patient characteristics. The objective of this paper is to analyze the association of socio-demographic variables, and especially socio-economic status with multimorbidity in general and with each multimorbidity pattern. Methods: The MultiCare Cohort Study is a multicentre, prospective, observational cohort study of 3.189 multimorbid patients aged 65+ randomly selected from 158 GP practices. Data were collected in GP interviews and comprehensive patient interviews. Missing values have been imputed by hot deck imputation based on Gower distance in morbidity and other variables. The association of patient characteristics with the number of chronic conditions is analysed by multilevel mixed-effects linear regression analyses. Results: Multimorbidity in general is associated with age (+0.07 chronic conditions per year), gender (-0.27 conditions for female), education (-0.26 conditions for medium and -0.29 conditions for high level vs. low level) and income (-0.27 conditions per logarithmic unit). The pattern of cardiovascular and metabolic disorders shows comparable associations with a higher coefficient for gender (-1.29 conditions for female), while multimorbidity within the pattern of ADS and pain correlates with gender (+0.79 conditions for female), but not with age or socioeconomic status. Conclusions: Our study confirms that the morbidity load of multimorbid patients is associated with age, gender and the socioeconomic status of the patients, but there were no effects of living arrangements and marital status. We could also show that the influence of patient characteristics is dependent on the multimorbidity pattern concerned, i.e. there seem to be at least two types of elderly multimorbid patients. First, there are patients with mainly cardiovascular and metabolic disorders, who are more often male, have an older age and a lower socio-economic status. Second, there are patients mainly with ADS and pain-related morbidity, who are more often female and equally distributed across age and socio-economic groups

    Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels

    Get PDF
    Voltage-gated Ca2+ channels couple membrane depolarization to Ca2+-dependent intracellular signaling events. This is achieved by mediating Ca2+ ion influx or by direct conformational coupling to intracellular Ca2+ release channels. The family of Cav1 channels, also termed L-type Ca2+ channels (LTCCs), is uniquely sensitive to organic Ca2+ channel blockers and expressed in many electrically excitable tissues. In this review, we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within their pore-forming α1 subunits causing hypokalemic periodic paralysis and malignant hyperthermia sensitivity (Cav1.1 α1), incomplete congenital stationary night blindness (CSNB2; Cav1.4 α1), and Timothy syndrome (Cav1.2 α1; reviewed separately in this issue). Cav1.3 α1 mutations have not been reported yet in humans, but channel loss of function would likely affect sinoatrial node function and hearing. Studies in mice revealed that LTCCs indirectly also contribute to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Cav2.1 α1 in tottering mice. Ca2+ channelopathies provide exciting disease-related molecular detail that led to important novel insight not only into disease pathophysiology but also to mechanisms of channel function

    DISC1 genetics, biology and psychiatric illness

    Get PDF
    Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain
    corecore