12 research outputs found

    Transcriptome Analysis during Human Trophectoderm Specification Suggests New Roles of Metabolic and Epigenetic Genes

    Get PDF
    In humans, successful pregnancy depends on a cascade of dynamic events during early embryonic development. Unfortunately, molecular data on these critical events is scarce. To improve our understanding of the molecular mechanisms that govern the specification/development of the trophoblast cell lineage, the transcriptome of human trophectoderm (TE) cells from day 5 blastocysts was compared to that of single day 3 embryos from our in vitro fertilization program by using Human Genome U133 Plus 2.0 microarrays. Some of the microarray data were validated by quantitative RT-PCR. The TE molecular signature included 2,196 transcripts, among which were genes already known to be TE-specific (GATA2, GATA3 and GCM1) but also genes involved in trophoblast invasion (MUC15), chromatin remodeling (specifically the DNA methyltransferase DNMT3L) and steroid metabolism (HSD3B1, HSD17B1 and FDX1). In day 3 human embryos 1,714 transcripts were specifically up-regulated. Besides stemness genes such as NANOG and DPPA2, this signature included genes belonging to the NLR family (NALP4, 5, 9, 11 and 13), Ret finger protein-like family (RFPL1, 2 and 3), Melanoma Antigen family (MAGEA1, 2, 3, 5, 6 and 12) and previously unreported transcripts, such as MBD3L2 and ZSCAN4. This study provides a comprehensive outlook of the genes that are expressed during the initial embryo-trophectoderm transition in humans. Further understanding of the biological functions of the key genes involved in steroidogenesis and epigenetic regulation of transcription that are up-regulated in TE cells may clarify their contribution to TE specification and might also provide new biomarkers for the selection of viable and competent blastocysts

    Global, Survival, and Apoptotic Transcriptome during Mouse and Human Early Embryonic Development

    No full text
    Survival and cell death signals are crucial for mammalian embryo preimplantation development. However, the knowledge on the molecular mechanisms underlying their regulation is still limited. Mouse studies are widely used to understand preimplantation embryo development, but extrapolation of these results to humans is questionable. Therefore, we wanted to analyse the global expression profiles during early mouse and human development with a special focus on genes involved in the regulation of the apoptotic and survival pathways. We used DNA microarray technology to analyse the global gene expression profiles of preimplantation human and mouse embryos (metaphase II oocytes, embryos at the embryonic genome activation stage, and blastocysts). Components of the major apoptotic and survival signalling pathways were expressed during early human and mouse embryonic development; however, most expression profiles were species-specific. Particularly, the expression of genes encoding components and regulators of the apoptotic machinery were extremely stable in mouse embryos at all analysed stages, while it was more stage-specific in human embryos. CASP3, CASP9, and AIF were the only apoptosis-related genes expressed in both species and at all studied stages. Moreover, numerous transcripts related to the apoptotic and survival pathway were reported for the first time such as CASP6 and IL1RAPL1 that were specific to MII oocytes; CASP2, ENDOG, and GFER to blastocysts in human. These findings open new perspectives for the characterization and understanding of the survival and apoptotic signalling pathways that control early human and mouse embryonic development
    corecore