2,411 research outputs found

    The Spectra of Large Toeplitz Band Matrices with a Randomly Perturbed Entry

    Get PDF
    This report is concerned with the union spΩ(j,k)Tn(a)sp_{\Omega}^{(j,k)}T_{n}(a) of all possible spectra that may emerge when perturbing a large n×nn \times n Toeplitz band matrix Tn(a)T_{n}(a) in the (j,k)(j,k) site by a number randomly chosen from some set Ω\Omega. The main results give descriptive bounds and, in several interesting situations, even provide complete identifications of the limit of spΩ(j,k)Tn(a)sp_{\Omega}^{(j,k)}T_{n}(a) as n→∞n \to \infty. Also discussed are the cases of small and large sets Ω\Omega as well as the "discontinuity of the infinite volume case", which means that in general spΩ(j,k)Tn(a)sp_{\Omega}^{(j,k)}T_{n}(a) does not converge to something close to spΩ(j,k)Tn(a)sp_{\Omega}^{(j,k)}T_{n}(a) as n→∞n \to \infty, where T(a)T(a) is the corresponding infinite Toeplitz matrix. Illustrations are provided for tridiagonal Toeplitz matrices, a notable special case. \ud \ud The second author was supported by UK Enginering and Physical Sciences Research Council Grant GR/M1241

    GRB990123: The Case for Saturated Comptonization

    Get PDF
    The recent simultaneous detection of optical, X-ray and gamma-ray photons from GRB990123 during the burst provides the first broadband multi-wavelength characterization of the burst spectrum and evolution. Here we show that a direct correlation exists between the time-varying gamma-ray spectral shape and the prompt optical emission. This combined with the unique signatures of the time-resolved spectra of GRB990123 convincingly supports earlier predictions of the saturated Comptonization model. Contrary to other suggestions, we find that the entire continuum from optical to gamma-rays can be generated from a single source of leptons (electrons and pairs). The optical flux only appears to lag the gamma-ray flux due to the high initial Thomson depth of the plasma. Once the plasma has completely thinned out, the late time afterglow behavior of our model is the same as in standard models based on the Blandford-McKee (1976) solution.Comment: 10 pages, including 3 figures and 1 table, submitted to The Astrophysical Journal Letter

    Numerical Results for Ground States of Mean-Field Spin Glasses at low Connectivities

    Full text link
    An extensive list of results for the ground state properties of spin glasses on random graphs is presented. These results provide a timely benchmark for currently developing theoretical techniques based on replica symmetry breaking that are being tested on mean-field models at low connectivity. Comparison with existing replica results for such models verifies the strength of those techniques. Yet, we find that spin glasses on fixed-connectivity graphs (Bethe lattices) exhibit a richer phenomenology than has been anticipated by theory. Our data prove to be sufficiently accurate to speculate about some exact results.Comment: 4 pages, RevTex4, 5 ps-figures included, related papers available at http://www.physics.emory.edu/faculty/boettcher

    A gentle guide to the basics of two projections theory

    Get PDF
    This paper is a survey of the basics of the theory of two projections. It contains in particular the theorem by Halmos on two orthogonal projections and Roch, Silbermann, Gohberg, and Krupnik\u27s theorem on two idempotents in Banach algebras. These two theorems, which deliver the desired results usually very quickly and comfortably, are missing or wrongly cited in many recent publications on the topic, The paper is intended as a gentle guide to the field. The basic theorems are precisely stated, some of them are accompanied by full proofs, others not, but precise references are given in each case, and many examples illustrate how to work with the theorems. (C) 2009 Elsevier Inc. All rights reserved

    Drazin inversion in the von Neumann algebra generated by two orthogonal projections

    Get PDF
    Criteria for Drazin and Moore-Penrose invertibility of operators in the von Neumann algebra generated by two orthogonal projections are established and explicit representations for the corresponding inverses are given. The results are illustrated by several examples that have recently been considered in the literature. (C) 2009 Elsevier Inc. All rights reserved

    Group inversion in certain finite-dimensional algebras generated by two idempotents

    Get PDF
    Invertibility in Banach algebras generated by two idempotents can be checked with the help of a theorem by Roch, Silbermann, Gohberg, and Krupnik. This theorem cannot be used to study generalized invertibility. The present paper is devoted to group invertibility in two types of finite-dimensional algebras which are generated by two idempotents, algebras generated by two tightly coupled idempotents on the one hand and algebras of dimension at most four on the other. As a side product, the paper gives the classification of all at most four-dimensional algebras which are generated by two idempotents. (c) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved

    Sarma phase in relativistic and non-relativistic systems

    Get PDF
    We investigate the stability of the Sarma phase in two-component fermion systems in three spatial dimensions. For this purpose we compare strongly-correlated systems with either relativistic or non-relativistic dispersion relation: relativistic quarks and mesons at finite isospin density and spin-imbalanced ultracold Fermi gases. Using a Functional Renormalization Group approach, we resolve fluctuation effects onto the corresponding phase diagrams beyond the mean-field approximation. We find that fluctuations induce a second order phase transition at zero temperature, and thus a Sarma phase, in the relativistic setup for large isospin chemical potential. This motivates the investigation of the cold atoms setup with comparable mean-field phase structure, where the Sarma phase could then be realized in experiment. However, for the non-relativistic system we find the stability region of the Sarma phase to be smaller than the one predicted from mean-field theory. It is limited to the BEC side of the phase diagram, and the unitary Fermi gas does not support a Sarma phase at zero temperature. Finally, we propose an ultracold quantum gas with four fermion species that has a good chance to realize a zero-temperature Sarma phase.Comment: version published in Phys.Lett.B; 10 pages, 5 figure
    • …
    corecore