research

The Spectra of Large Toeplitz Band Matrices with a Randomly Perturbed Entry

Abstract

This report is concerned with the union spΩ(j,k)Tn(a)sp_{\Omega}^{(j,k)}T_{n}(a) of all possible spectra that may emerge when perturbing a large n×nn \times n Toeplitz band matrix Tn(a)T_{n}(a) in the (j,k)(j,k) site by a number randomly chosen from some set Ω\Omega. The main results give descriptive bounds and, in several interesting situations, even provide complete identifications of the limit of spΩ(j,k)Tn(a)sp_{\Omega}^{(j,k)}T_{n}(a) as nn \to \infty. Also discussed are the cases of small and large sets Ω\Omega as well as the "discontinuity of the infinite volume case", which means that in general spΩ(j,k)Tn(a)sp_{\Omega}^{(j,k)}T_{n}(a) does not converge to something close to spΩ(j,k)Tn(a)sp_{\Omega}^{(j,k)}T_{n}(a) as nn \to \infty, where T(a)T(a) is the corresponding infinite Toeplitz matrix. Illustrations are provided for tridiagonal Toeplitz matrices, a notable special case. \ud \ud The second author was supported by UK Enginering and Physical Sciences Research Council Grant GR/M1241

    Similar works