156 research outputs found

    Optical Coherence Tomography in Parkinsonian Syndromes

    Get PDF
    BACKGROUND/OBJECTIVE: Parkinson's disease (PD) and the atypical parkinsonian syndromes multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are movement disorders associated with degeneration of the central nervous system. Degeneration of the retina has not been systematically compared in these diseases. METHODS: This cross-sectional study used spectral-domain optical coherence tomography with manual segmentation to measure the peripapillar nerve fiber layer, the macular thickness, and the thickness of all retinal layers in foveal scans of 40 patients with PD, 19 with MSA, 10 with CBS, 15 with PSP, and 35 age- and sex-matched controls. RESULTS: The mean paramacular thickness and volume were reduced in PSP while the mean RNFL did not differ significantly between groups. In PSP patients, the complex of retinal ganglion cell- and inner plexiform layer and the outer nuclear layer was reduced. In PD, the inner nuclear layer was thicker than in controls, MSA and PSP. Using the ratio between the outer nuclear layer and the outer plexiform layer with a cut-off at 3.1 and the additional constraint that the inner nuclear layer be under 46 µm, we were able to differentiate PSP from PD in our patient sample with a sensitivity of 96% and a specificity of 70%. CONCLUSION: Different parkinsonian syndromes are associated with distinct changes in retinal morphology. These findings may serve to facilitate the differential diagnosis of parkinsonian syndromes and give insight into the degenerative processes of patients with atypical parkinsonian syndromes

    Pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) in the early stages of Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is one of the most common causes of dementia in the world. Patients with AD frequently complain of vision disturbances that do not manifest as changes in routine ophthalmological examination findings. The main causes of these disturbances are neuropathological changes in the visual cortex, although abnormalities in the retina and optic nerve cannot be excluded. Pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) tests are commonly used in ophthalmology to estimate bioelectrical function of the retina and optic nerve. The aim of this study was to determine whether retinal and optic nerve function, measured by PERG and PVEP tests, is changed in individuals in the early stages of AD with normal routine ophthalmological examination results. Standard PERG and PVEP tests were performed in 30 eyes of 30 patients with the early stages of AD. The results were compared to 30 eyes of 30 normal healthy controls. PERG and PVEP tests were recorded in accordance with the International Society for Clinical Electrophysiology of Vision (ISCEV) standards. Additionally, neural conduction was measured using retinocortical time (RCT)—the difference between P100-wave latency in PVEP and P50-wave implicit time in PERG. In PERG test, PVEP test, and RCT, statistically significant changes were detected. In PERG examination, increased implicit time of P50-wave (P < 0.03) and amplitudes reductions in P50- and N95-waves (P < 0.0001) were observed. In PVEP examination, increased latency of P100-wave (P < 0.0001) was found. A significant increase in RCT (P < 0.0001) was observed. The most prevalent features were amplitude reduction in N95-wave and increased latency of P100-wave which were seen in 56.7% (17/30) of the AD eyes. In patients with the early stages of AD and normal routine ophthalmological examination results, dysfunction of the retinal ganglion cells as well as of the optic nerve is present, as detected by PERG and PVEP tests. These dysfunctions, at least partially, explain the cause of visual disturbances observed in patients with the early stages of AD

    Altered Perceptual Sensitivity to Kinematic Invariants in Parkinson's Disease

    Get PDF
    Ample evidence exists for coupling between action and perception in neurologically healthy individuals, yet the precise nature of the internal representations shared between these domains remains unclear. One experimentally derived view is that the invariant properties and constraints characterizing movement generation are also manifested during motion perception. One prominent motor invariant is the “two-third power law,” describing the strong relation between the kinematics of motion and the geometrical features of the path followed by the hand during planar drawing movements. The two-thirds power law not only characterizes various movement generation tasks but also seems to constrain visual perception of motion. The present study aimed to assess whether motor invariants, such as the two thirds power law also constrain motion perception in patients with Parkinson's disease (PD). Patients with PD and age-matched controls were asked to observe the movement of a light spot rotating on an elliptical path and to modify its velocity until it appeared to move most uniformly. As in previous reports controls tended to choose those movements close to obeying the two-thirds power law as most uniform. Patients with PD displayed a more variable behavior, choosing on average, movements closer but not equal to a constant velocity. Our results thus demonstrate impairments in how the two-thirds power law constrains motion perception in patients with PD, where this relationship between velocity and curvature appears to be preserved but scaled down. Recent hypotheses on the role of the basal ganglia in motor timing may explain these irregularities. Alternatively, these impairments in perception of movement may reflect similar deficits in motor production

    The Upper and Lower Visual Field of Man: Electrophysiological and Functional Differences

    Get PDF

    Ocular indicators of Alzheimer’s: exploring disease in the retina

    Get PDF

    Cognitive Neurophysiology of Parkinson Disease

    No full text

    The push–pull action of dopamine on spatial tuning of the monkey retina: the effects of dopaminergic deficiency and selective D1 and D2 receptor ligands on the pattern electroretinogram.

    Get PDF
    AbstractRetinal dopamine depletion in monkeys using either systemic MPTP or 6-OHDA results in attenuated electroretinographic (ERG) responses to peak spatial frequency stimuli. Diverse dopamine receptors have been identified in the primate retina. ERG studies performed using Haloperidol (a mixed antagonist), l-Sulpiride (D2 antagonist) and CY 208-243 (a D1 agonist) cause spatial frequency dependent diverse effects. ‘Tuning’ of the normal spatial contrast response PERG, was quantified by dividing the amplitude of the response at the peak spatial frequency with the amplitude to the low spatial frequency response yielding a number greater than one. Tuning for the pharmacological experiments was defined by dividing the actual amplitude obtained at the normal peak response with the actual amplitude at the low spatial frequency response. The PERG spatial contrast response function is discussed as the envelope output of retinal ganglion cells or the average or ‘equivalent’ retinal ganglion cell. However, we postulate the existence of two dopamine sensitive pathways with different weights for two classes of ganglion cells. It is inferred that D1 receptors are primarily affecting the ‘surround’ organization of ganglion cells with large centers, while D2 post-synaptic receptors contribute to ‘center’ response amplification of ganglion cells with smaller centers. These inferences are consistent with some lower vertebrate data. It is also inferred that low affinity D2 autoreceptors may be involved in the D1 ‘surround’ pathway. An understanding of the logic performed by retinal D1 and D2 receptors may be useful to discern the functional role of diverse dopamine receptors in DA circuits elsewhere in the CNS
    corecore