16,678 research outputs found

    Scar Intensity Statistics in the Position Representation

    Full text link
    We obtain general predictions for the distribution of wave function intensities in position space on the periodic orbits of chaotic ballistic systems. The expressions depend on effective system size N, instability exponent lambda of the periodic orbit, and proximity to a focal point of the orbit. Limiting expressions are obtained that include the asymptotic probability distribution of rare high-intensity events and a perturbative formula valid in the limit of weak scarring. For finite system sizes, a single scaling variable lambda N describes deviations from the semiclassical N -> infinity limit.Comment: To appear in Phys. Rev. E, 10 pages, including 4 figure

    New Limits on Radio Emission from X-ray Dim Isolated Neutron Stars

    Get PDF
    We have carried out a search for radio emission at 820 MHz from six X-ray dim isolated neutron stars with the Robert C. Byrd Green Bank Radio Telescope. No transient or pulsed emission was found using fast folding, fast Fourier transform, and single-pulse searches. The corresponding flux limits are about 0.01 mJy for pulsed emission, depending on the integration time for the particular source and assuming a duty cycle of 2%, and 20 mJy for single dispersed pulses. These are the most sensitive limits to date on radio emission from X-ray dim isolated neutron stars. There is no evidence for isolated radio pulses, as seen in a class of neutron stars known as rotating radio transients. Our results imply that either the radio luminosities of these objects are lower than those of any known radio pulsars, or they could simply be long-period nearby radio pulsars with high magnetic fields beaming away from the Earth. To test the latter possibility, we would need around 40 similar sources to provide a 1 sigma probability of at least one of them beaming toward us. We also give a detailed description of our implementation of the Fast Folding Algorithm.Comment: 16 pages, 8 figures, 3 tables, accepted to Ap

    Supersymmetry on a Spatial Lattice

    Full text link
    We construct a variety of supersymmetric gauge theories on a spatial lattice, including N=4 supersymmetric Yang-Mills theory in 3+1 dimensions. Exact lattice supersymmetry greatly reduces or eliminates the need for fine tuning to arrive at the desired continuum limit in these examples.Comment: Version 3: Text brought in line with published version (extended discussion of orbifolding

    The Supersymmetric Ward-Takahashi Identity in 1-Loop Lattice Perturbation Theory. I. General Procedure

    Full text link
    The one-loop corrections to the lattice supersymmetric Ward-Takahashi identity (WTi) are investigated in the off-shell regime. In the Wilson formulation of the N=1 supersymmetric Yang-Mills (SYM) theory, supersymmetry (SUSY) is broken by the lattice, by the Wilson term and is softly broken by the presence of the gluino mass. However, the renormalization of the supercurrent can be realized in a scheme that restores the continuum supersymmetric WTi (once the on-shell condition is imposed). The general procedure used to calculate the renormalization constants and mixing coefficients for the local supercurrent is presented. The supercurrent not only mixes with the gauge invariant operator TÎĽT_\mu. An extra mixing with other operators coming from the WTi appears. This extra mixing survives in the continuum limit in the off-shell regime and cancels out when the on-shell condition is imposed and the renormalized gluino mass is set to zero. Comparison with numerical results are also presented.Comment: 16 pages, 2 figures. Typos error correcte

    Scarring Effects on Tunneling in Chaotic Double-Well Potentials

    Full text link
    The connection between scarring and tunneling in chaotic double-well potentials is studied in detail through the distribution of level splittings. The mean level splitting is found to have oscillations as a function of energy, as expected if scarring plays a role in determining the size of the splittings, and the spacing between peaks is observed to be periodic of period {2πℏ2\pi\hbar} in action. Moreover, the size of the oscillations is directly correlated with the strength of scarring. These results are interpreted within the theoretical framework of Creagh and Whelan. The semiclassical limit and finite-{ℏ\hbar} effects are discussed, and connections are made with reaction rates and resonance widths in metastable wells.Comment: 22 pages, including 11 figure

    Silk fibroin-spider silk-like protein biomaterials for preventing microbial infections

    Get PDF
    Publicado em "Frontiers in Bioengineering and Biotechnology. Conference Abstract: 10th World Biomaterials Congress"Introduction: Microbial contamination of medical devices, such as sutures, are one of the major causes of hospital infections despite improvements in medical healthcare[1]. Thus, it is important to explore new biomaterials with antimicrobial properties in order to overcome microbial colonisation and biofilm formation. Spider silk has been considered an excellent biomaterial because of its toughness, strength and outstanding elasticity[2]. Also, through recombinant DNA technology, we can bioengineer and functionalize spider silk-based materials with antimicrobial peptides (AMP), thus evolving a new type of biomaterials[3]. Herein, the aim of this study was to develop silk-based fibers with antimicrobial properties by combining silk fibroin (SF) with recombinant spider silk proteins functionalized with AMP. Materials and Methods: Silk-based sutures were produced by combining spider silk chimeric proteins SSP (6mer and 6mer-HNP1) with different ratios of SF extracted from Bombyx mori through wet-spinning. The structure and topography of the sutures were characterized by scanning electron microscopy (SEM) and the tensile properties and knot strength of the sutures was assessed using an INSTRON 5540 Universal Machine. The formation of biofilm on the fibers was assessed and hemolytic effects of the materials were evaluated. Results and Discussion: Silk fibers containing spider silk 6mer or 6mer-HNP1 showed improved tensile behaviour when compared to silk fibers without SPP (Figure 1). The results suggest that the combination of spider silk chimeric proteins with SF increased the tensile stress of the fibers, when compared to those without spider silk chimeric proteins. No bacterial biofilm was observed on the fibers containing SSP functionalized with AMP, suggesting that the presence of the 6mer-HNP1 prevented the formation of biofilm. Conclusions: The outcomes suggest that silk-based fibers functionalized with AMP showed better mechanical properties when compared to silk fibers alone. The data also demonstrate the positive effect of the presence of AMP in preventing biofilm formation on the fibers, suggesting that the functionalized silk fibers could be used as a new strategy to produce sutures capable of preventing microbial proliferation, while retaining useful mechanical properties. Further investigation is still need in order to understand the in vivo performance of sutures and their physical changes during wound healing.Portuguese Foundation for Science and Technology under the scope of the project PTDC/BBB­BIO/0827/201

    Symmetry of two terminal, non-linear electric conduction

    Full text link
    The well-established symmetry relations for linear transport phenomena can not, in general, be applied in the non-linear regime. Here we propose a set of symmetry relations with respect to bias voltage and magnetic field for the non-linear conductance of two-terminal electric conductors. We experimentally confirm these relations using phase-coherent, semiconductor quantum dots.Comment: 4 pages, 4 figure

    Simulations of magnetic and magnetoelastic properties of Tb2Ti2O7 in paramagnetic phase

    Full text link
    Magnetic and magnetoelastic properties of terbium titanate pyrochlore in paramagnetic phase are simulated. The magnetic field and temperature dependences of magnetization and forced magnetostriction in Tb2Ti2O7 single crystals and polycrystalline samples are calculated in the framework of exchange charge model of crystal field theory and a mean field approximation. The set of electron-deformation coupling constants has been determined. Variations of elastic constants with temperature and applied magnetic field are discussed. Additional strong softening of the crystal lattice at liquid helium temperatures in the magnetic field directed along the rhombic symmetry axis is predicted.Comment: 13 pages, 4 figures, 2 table
    • …
    corecore