26 research outputs found

    Phosphine Resistance in the Rust Red Flour Beetle, Tribolium castaneum (Coleoptera: Tenebrionidae): Inheritance, Gene Interactions and Fitness Costs

    Get PDF
    The recent emergence of heritable high level resistance to phosphine in stored grain pests is a serious concern among major grain growing countries around the world. Here we describe the genetics of phosphine resistance in the rust red flour beetle Tribolium castaneum (Herbst), a pest of stored grain as well as a genetic model organism. We investigated three field collected strains of T. castaneum viz., susceptible (QTC4), weakly resistant (QTC1012) and strongly resistant (QTC931) to phosphine. The dose-mortality responses of their test- and inter-cross progeny revealed that most resistance was conferred by a single major resistance gene in the weakly (3.2×) resistant strain. This gene was also found in the strongly resistant (431×) strain, together with a second major resistance gene and additional minor factors. The second major gene by itself confers only 12–20× resistance, suggesting that a strong synergistic epistatic interaction between the genes is responsible for the high level of resistance (431×) observed in the strongly resistant strain. Phosphine resistance is not sex linked and is inherited as an incompletely recessive, autosomal trait. The analysis of the phenotypic fitness response of a population derived from a single pair inter-strain cross between the susceptible and strongly resistant strains indicated the changes in the level of response in the strong resistance phenotype; however this effect was not consistent and apparently masked by the genetic background of the weakly resistant strain. The results from this work will inform phosphine resistance management strategies and provide a basis for the identification of the resistance genes

    A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12

    Get PDF
    Monoclonal antibodies represent some of the most promising molecular targeted immunotherapies. However, understanding mechanisms by which tumors evade elimination by the immune system of the host presents a significant challenge for developing effective cancer immunotherapies. The interaction of cancer cells with the host is a complex process that is distributed across a variety of time and length scales. The time scales range from the dynamics of protein refolding (i.e., microseconds) to the dynamics of disease progression (i.e., years). The length scales span the farthest reaches of the human body (i.e., meters) down to the range of molecular interactions (i.e., nanometers). Limited ranges of time and length scales are used experimentally to observe and quantify changes in physiology due to cancer. Translating knowledge obtained from the limited scales observed experimentally to predict patient response is an essential prerequisite for the rational design of cancer immunotherapies that improve clinical outcomes. In studying multiscale systems, engineers use systems analysis and design to identify important components in a complex system and to test conceptual understanding of the integrated system behavior using simulation. The objective of this review is to summarize interactions between the tumor and cell-mediated immunity from a multiscale perspective. Interleukin-12 and its role in coordinating antibody-dependent cell-mediated cytotoxicity is used illustrate the different time and length scale that underpin cancer immunoediting. An underlying theme in this review is the potential role that simulation can play in translating knowledge across scales

    Placentally derived prostaglandin E2 acts via the EP4 receptor to inhibit IL-2-dependent proliferation of CTLL-2 T cells.

    No full text
    A number of immunomodulatory molecules are present in the placenta, including cytokines, prostaglandins, progesterone and indoleamine 2,3-dioxygenase. An undefined factor capable of down-regulating T-cell activity has recently been reported [1] as being produced by short-term cultures of placental fragments. By careful repetition of these studies we have confirmed that chorionic villi isolated from term placenta produce a low molecular weight, heat stable factor capable of inhibiting the IL-2-dependent proliferation of mouse CTLL-2 cells. This activity was not due, however, to a previously unknown immunosuppressive molecule, but rather to prostaglandin E2 (PGE2). Expression of cyclooxygenase (COX)-2 was detected in the syncytiotrophoblast of chorionic villi explants using immunohistochemistry. Culture of the explants in the presence of the COX-1/COX–2 inhibitors indomethacin and diclofenac, or with the COX-2-selective inhibitor DFP, blocked the production of the immunosuppressive factor. The immunosuppressive activity was restored by adding PGE2 to the supernatants obtained from diclofenac-inhibited explants. A number of different receptors are involved in mediating the biological effects of prostaglandins. By utilizing selective antagonists of individual receptors, we have established that the immunosuppressive effect of PGE2 on CTLL-2 cells is exerted via the EP4 receptor. Thus, addition of an EP4-selective antagonist, but not of EP1 or EP3 antagonists, abolished the immunosuppressive effect of PGE2 on CTLL-2 cells. This may have implications for attempts to selectively manipulate T-cell responses

    Quantitative and Qualitative Analysis of Blood-based Liquid Biopsies to Inform Clinical Decision-making in Prostate Cancer

    No full text
    Context: Genomic stratification can impact prostate cancer (PC) care through diagnostic, prognostic, and predictive biomarkers that aid in clinical decision-making. The temporal and spatial genomic heterogeneity of PC together with the challenges of acquiring metastatic tissue biopsies hinder implementation of tissue-based molecular profiling in routine clinical practice. Blood-based liquid biopsies are an attractive, minimally invasive alternative. Objective: To review the clinical value of blood-based liquid biopsy assays in PC and identify potential applications to accelerate the development of precision medicine. Evidence acquisition: A systematic review of PubMed/MEDLINE was performed to identify relevant literature on blood-based circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and extracellular vesicles (EVs) in PC. Evidence synthesis: Liquid biopsy has emerged as a practical tool to profile tumor dynamics over time, elucidating features that evolve (genome, epigenome, transcriptome, and proteome) with tumor progression. Liquid biopsy tests encompass analysis of DNA, RNA, and proteins that can be detected in CTCs, ctDNA, or EVs. Blood-based liquid biopsies have demonstrated promise in the context of localized tumors (diagnostic signatures, risk stratification, and disease monitoring) and advanced disease (response/resistance biomarkers and prognostic markers). Conclusions: Liquid biopsies have value as a source of prognostic, predictive, and response biomarkers in PC. Most clinical applications have been developed in the advanced metastatic setting, where CTC and ctDNA yields are significantly higher. However, standardization of assays and analytical/clinical validation is necessary prior to clinical implementation. Patient summary: Traces of tumors can be isolated from blood samples from patients with prostate cancer either as whole cells or as DNA fragments. These traces provide information on tumor features. These minimally invasive tests can guide diagnosis and treatment selection

    The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly conserved sequence element

    No full text
    Background: It is now obvious that the majority of cellular transcripts do not code for proteins, and a significant subset of them are long non-coding RNAs (lncRNAs). Many lncRNAs show aberrant expression in cancer, and some of them have been linked to cell transformation. However, the underlying mechanisms remain poorly understood and it is unknown how the sequences of lncRNA dictate their function. Results: Here we characterize the function of the p53-regulated human lncRNA LINC-PINT in cancer. We find that LINC-PINT is downregulated in multiple types of cancer and acts as a tumor suppressor lncRNA by reducing the invasive phenotype of cancer cells. A cross-species analysis identifies a highly conserved sequence element in LINC-PINT that is essential for its function. This sequence mediates a specific interaction with PRC2, necessary for the LINC-PINT-dependent repression of a pro-invasion signature of genes regulated by the transcription factor EGR1. Conclusions: Our findings support a conserved functional co-dependence between LINC-PINT and PRC2 and lead us to propose a new mechanism where the lncRNA regulates the availability of free PRC2 at the proximity of co-regulated genomic loci

    A co-fumigation strategy utilizing reduced rates of phosphine (PH3) and sulfuryl fluoride (SF) to control strongly resistant rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae)

    No full text
    BACKGROUND Managing resistance to phosphine (PH3) in rusty grain beetle, Cryptolestes ferrugineus, is challenging, as strongly resistant insects of this species require very high concentrations over lengthy exposure periods (>10 days). Recently, approaches that enhance the efficacy of PH3 have gained momentum to control this pest, especially co-fumigations. In this study, efficacy of co-fumigating PH3 with another commercially available fumigant, sulfuryl fluoride (SF), has been evaluated against adults and eggs of two PH3-resistant strains of C. ferrugineus. Concentrations of the mixture, representing lower than current application rates of both fumigants, were tested towards its field use. RESULTS Co-fumigation of PH3 with SF was achieved in two patterns: over a continuous exposure period of 168 h simultaneously and sequentially over two periods of 78 h, in which insects were exposed to SF first followed by PH3 with 12 h aeration in-between. Results of simultaneous fumigations identified two effective co-fumigation rates, SF 185 + PH3 168 g hm−3 and SF 370 + PH3 84 g hm−3 that yielded complete control of adults and eggs. These two rates also were equally effective when they were applied sequentially and produced consistent results. Irrespective of application methods, concentrations of both PH3 and SF failed individually in achieving complete mortality of either adults or eggs or both. CONCLUSION Our results confirmed that a co-fumigation strategy involving half the current standard rate of PH3 (84 g hm−3) with one-fourth of the current maximal registered rate of SF (370 g hm−3) can provide effective control of strongly PH3-resistant C. ferrugineus

    Analysis of copy number alterations reveals the lncRNA ALAL-1 as a regulator of lung cancer immune evasion

    No full text
    Cancer is characterized by genomic instability leading to deletion or amplification of oncogenes or tumor suppressors. However, most of the altered regions are devoid of known cancer drivers. Here, we identify lncRNAs frequently lost or amplified in cancer. Among them, we found amplified lncRNA associated with lung cancer-1 (ALAL-1) as frequently amplified in lung adenocarcinomas. ALAL-1 is also overexpressed in additional tumor types, such as lung squamous carcinoma. The RNA product of ALAL-1 is able to promote the proliferation and tumorigenicity of lung cancer cells. ALAL-1 is a TNFα− and NF-κB–induced cytoplasmic lncRNA that specifically interacts with SART3, regulating the subcellular localization of the protein deubiquitinase USP4 and, in turn, its function in the cell. Interestingly, ALAL-1 expression inversely correlates with the immune infiltration of lung squamous tumors, while tumors with ALAL-1 amplification show lower infiltration of several types of immune cells. We have thus unveiled a pro-oncogenic lncRNA that mediates cancer immune evasion, pointing to a new target for immune potentiation
    corecore