3,916 research outputs found

    Versatile Digital GHz Phase Lock for External Cavity Diode Lasers

    Full text link
    We present a versatile, inexpensive and simple optical phase lock for applications in atomic physics experiments. Thanks to all-digital phase detection and implementation of beat frequency pre-scaling, the apparatus requires no microwave-range reference input, and permits phase locking at frequency differences ranging from sub-MHz to 7 GHz (and with minor extension, to 12 GHz). The locking range thus covers ground state hyperfine splittings of all alkali metals, which makes this system a universal tool for many experiments on coherent interaction between light and atoms.Comment: 4.5 pages, 5 figures v3: fixed error in schematic: R10 connects to other end of C

    Exact Maps in Density Functional Theory for Lattice Models

    Full text link
    In the present work, we employ exact diagonalization for model systems on a real-space lattice to explicitly construct the exact density-to-potential and for the first time the exact density-to-wavefunction map that underly the Hohenberg-Kohn theorem in density functional theory. Having the explicit wavefunction-to- density map at hand, we are able to construct arbitrary observables as functionals of the ground-state density. We analyze the density-to-potential map as the distance between the fragments of a system increases and the correlation in the system grows. We observe a feature that gradually develops in the density-to-potential map as well as in the density-to-wavefunction map. This feature is inherited by arbitrary expectation values as functional of the ground-state density. We explicitly show the excited-state energies, the excited-state densities, and the correlation entropy as functionals of the ground-state density. All of them show this exact feature that sharpens as the coupling of the fragments decreases and the correlation grows. We denominate this feature as intra-system steepening. We show that for fully decoupled subsystems the intra-system steepening transforms into the well-known inter-system derivative discontinuity. An important conclusion is that for e.g. charge transfer processes between localized fragments within the same system it is not the usual inter-system derivative discontinuity that is missing in common ground-state functionals, but rather the differentiable intra-system steepening that we illustrate in the present work

    Photons as quasi-charged particles

    Full text link
    The Schrodinger motion of a charged quantum particle in an electromagnetic potential can be simulated by the paraxial dynamics of photons propagating through a spatially inhomogeneous medium. The inhomogeneity induces geometric effects that generate an artificial vector potential to which signal photons are coupled. This phenomenon can be implemented with slow light propagating through an a gas of double-Lambda atoms in an electromagnetically-induced transparency setting with spatially varied control fields. It can lead to a reduced dispersion of signal photons and a topological phase shift of Aharonov-Bohm type

    A new proof that alternating links are non-trivial

    Full text link
    We use a simple geometric argument and small cancellation properties of link groups to prove that alternating links are non-trivial. This proof uses only classic results in topology and combinatorial group theory.Comment: Minor changes. To appear in Fundamenta Mathematica

    The time-dependent exchange-correlation functional for a Hubbard dimer: quantifying non-adiabatic effect

    Get PDF
    We address and quantify the role of non-adiabaticity ("memory effects") in the exchange-correlation (xc) functional of time-dependent density functional theory (TDDFT) for describing non-linear dynamics of many-body systems. Time-dependent resonant processes are particularly challenging for available TDDFT approximations, due to their strong non-linear and non-adiabatic character. None of the known approximate density functionals are able to cope with this class of problems in a satisfactory manner. In this work we look at the prototypical example of the resonant processes by considering Rabi oscillations within the exactly soluble 2-site Hubbard model. We construct the exact adiabatic xc functional and show that (i) it does not reproduce correctly resonant Rabi dynamics, (ii) there is a sizable non-adiabatic contribution to the exact xc potential, which turns out to be small only at the beginning and at the end of the Rabi cycle when the ground state population is dominant. We then propose a "two-level" approximation for the time-dependent xc potential which can capture Rabi dynamics in the 2-site problem. It works well both for resonant and for detuned Rabi oscillations and becomes essentially exact in the linear response regime. This new, fully non-adiabatic and explicit density functional constitutes one of the main results of the present work.Comment: 8 pages, 5 figure

    A Prolonged Slump for ‘Plaintiff-Pitchers’: The Narrow ‘Strike Zone’ for Securities Plaintiffs in the Fourth Circuit

    Get PDF
    This article focuses on the narrow “strike zone” that plaintiffs must overcome in private securities actions instituted in the Fourth Circuit. Based on empirical data generated over a fourteen-year span, there emerges a clear finding that during that time period defendants were victorious in almost all cases, either on the merits of the case or due to procedural obstacles. The authors posit that this pattern of difficulty for plaintiffs arises, at least in part, from the Fourth Circuit’s restrictive interpretation of various requisite elements of these causes of action, such as materiality and scienter, as well as the Fourth Circuit’s approach to the pleading standards mandated by the PSLRA and the Federal Rules of Civil Procedure. The authors examine in detail some of the leading securities cases that establish Fourth Circuit precedent in these areas, as well as notable cases from the survey period, to illustrate the confines of the narrow “strike zone” available to plaintiffs to establish a meritorious claim

    Formalizing Size-Optimal Sorting Networks: Extracting a Certified Proof Checker

    Full text link
    Since the proof of the four color theorem in 1976, computer-generated proofs have become a reality in mathematics and computer science. During the last decade, we have seen formal proofs using verified proof assistants being used to verify the validity of such proofs. In this paper, we describe a formalized theory of size-optimal sorting networks. From this formalization we extract a certified checker that successfully verifies computer-generated proofs of optimality on up to 8 inputs. The checker relies on an untrusted oracle to shortcut the search for witnesses on more than 1.6 million NP-complete subproblems.Comment: IMADA-preprint-c

    Coloring random graphs

    Full text link
    We study the graph coloring problem over random graphs of finite average connectivity cc. Given a number qq of available colors, we find that graphs with low connectivity admit almost always a proper coloring whereas graphs with high connectivity are uncolorable. Depending on qq, we find the precise value of the critical average connectivity cqc_q. Moreover, we show that below cqc_q there exist a clustering phase c[cd,cq]c\in [c_d,c_q] in which ground states spontaneously divide into an exponential number of clusters and where the proliferation of metastable states is responsible for the onset of complexity in local search algorithms.Comment: 4 pages, 1 figure, version to app. in PR
    corecore