1,718 research outputs found

    Good Concatenated Code Ensembles for the Binary Erasure Channel

    Full text link
    In this work, we give good concatenated code ensembles for the binary erasure channel (BEC). In particular, we consider repeat multiple-accumulate (RMA) code ensembles formed by the serial concatenation of a repetition code with multiple accumulators, and the hybrid concatenated code (HCC) ensembles recently introduced by Koller et al. (5th Int. Symp. on Turbo Codes & Rel. Topics, Lausanne, Switzerland) consisting of an outer multiple parallel concatenated code serially concatenated with an inner accumulator. We introduce stopping sets for iterative constituent code oriented decoding using maximum a posteriori erasure correction in the constituent codes. We then analyze the asymptotic stopping set distribution for RMA and HCC ensembles and show that their stopping distance hmin, defined as the size of the smallest nonempty stopping set, asymptotically grows linearly with the block length. Thus, these code ensembles are good for the BEC. It is shown that for RMA code ensembles, contrary to the asymptotic minimum distance dmin, whose growth rate coefficient increases with the number of accumulate codes, the hmin growth rate coefficient diminishes with the number of accumulators. We also consider random puncturing of RMA code ensembles and show that for sufficiently high code rates, the asymptotic hmin does not grow linearly with the block length, contrary to the asymptotic dmin, whose growth rate coefficient approaches the Gilbert-Varshamov bound as the rate increases. Finally, we give iterative decoding thresholds for the different code ensembles to compare the convergence properties.Comment: To appear in IEEE Journal on Selected Areas in Communications, special issue on Capacity Approaching Code

    Threshold Saturation for Nonbinary SC-LDPC Codes on the Binary Erasure Channel

    Full text link
    We analyze the asymptotic performance of nonbinary spatially-coupled low-density parity-check (SC-LDPC) code ensembles defined over the general linear group on the binary erasure channel. In particular, we prove threshold saturation of belief propagation decoding to the so called potential threshold, using the proof technique based on potential functions introduced by Yedla \textit{et al.}, assuming that the potential function exists. We rewrite the density evolution of nonbinary SC-LDPC codes in an equivalent vector recursion form which is suited for the use of the potential function. We then discuss the existence of the potential function for the general case of vector recursions defined by multivariate polynomials, and give a method to construct it. We define a potential function in a slightly more general form than one by Yedla \textit{et al.}, in order to make the technique based on potential functions applicable to the case of nonbinary LDPC codes. We show that the potential function exists if a solution to a carefully designed system of linear equations exists. Furthermore, we show numerically the existence of a solution to the system of linear equations for a large number of nonbinary LDPC code ensembles, which allows us to define their potential function and thus prove threshold saturation.Comment: To appear in IT Transaction

    Distributed Turbo-Like Codes for Multi-User Cooperative Relay Networks

    Full text link
    In this paper, a distributed turbo-like coding scheme for wireless networks with relays is proposed. We consider a scenario where multiple sources communicate with a single destination with the help of a relay. The proposed scheme can be regarded as of the decode-and-forward type. The relay decodes the information from the sources and it properly combines and re-encodes them to generate some extra redundancy, which is transmitted to the destination. The amount of redundancy generated by the relay can simply be adjusted according to requirements in terms of performance, throughput and/or power. At the destination, decoding of the information of all sources is performed jointly exploiting the redundancy provided by the relay in an iterative fashion. The overall communication network can be viewed as a serially concatenated code. The proposed distributed scheme achieves significant performance gains with respect to the non-cooperation system, even for a very large number of users. Furthermore, it presents a high flexibility in terms of code rate, block length and number of users.Comment: Submitted to ICC 201

    Finite Length Analysis of Irregular Repetition Slotted ALOHA in the Waterfall Region

    Get PDF
    A finite length analysis is introduced for irregular repetition slotted ALOHA (IRSA) that enables to accurately estimate its performance in the moderate-to-high packet loss probability regime, i.e., in the so-called waterfall region. The analysis is tailored to the collision channel model, which enables mapping the description of the successive interference cancellation process onto the iterative erasure decoding of low-density parity-check codes. The analysis provides accurate estimates of the packet loss probability of IRSA in the waterfall region as demonstrated by Monte Carlo simulations.Comment: Accepted for publication in the IEEE Communications Letter

    Analysis of Spatially-Coupled Counter Braids

    Get PDF
    A counter braid (CB) is a novel counter architecture introduced by Lu et al. in 2007 for per-flow measurements on high-speed links. CBs achieve an asymptotic compression rate (under optimal decoding) that matches the entropy lower bound of the flow size distribution. Spatially-coupled CBs (SC-CBs) have recently been proposed. In this work, we further analyze single-layer CBs and SC-CBs using an equivalent bipartite graph representation of CBs. On this equivalent representation, we show that the potential and area thresholds are equal. We also show that the area under the extended belief propagation (BP) extrinsic information transfer curve (defined for the equivalent graph), computed for the expected residual CB graph when a peeling decoder equivalent to the BP decoder stops, is equal to zero precisely at the area threshold. This, combined with simulations and an asymptotic analysis of the Maxwell decoder, leads to the conjecture that the area threshold is in fact equal to the Maxwell decoding threshold and hence a lower bound on the maximum a posteriori (MAP) decoding threshold. Finally, we present some numerical results and give some insight into the apparent gap of the BP decoding threshold of SC-CBs to the conjectured lower bound on the MAP decoding threshold.Comment: To appear in the IEEE Information Theory Workshop, Jeju Island, Korea, October 201

    Nonbinary Spatially-Coupled LDPC Codes on the Binary Erasure Channel

    Get PDF
    We analyze the asymptotic performance of nonbinary spatially-coupled low-density parity-check (SC-LDPC) codes built on the general linear group, when the transmission takes place over the binary erasure channel. We propose an efficient method to derive an upper bound to the maximum a posteriori probability (MAP) threshold for nonbinary LDPC codes, and observe that the MAP performance of regular LDPC codes improves with the alphabet size. We then consider nonbinary SC-LDPC codes. We show that the same threshold saturation effect experienced by binary SC-LDPC codes occurs for the nonbinary codes, hence we conjecture that the BP threshold for large termination length approaches the MAP threshold of the underlying regular ensemble.Comment: Submitted to IEEE International Conference on Communications 201

    A Unified Ensemble of Concatenated Convolutional Codes

    Get PDF
    We introduce a unified ensemble for turbo-like codes (TCs) that contains the four main classes of TCs: parallel concatenated codes, serially concatenated codes, hybrid concatenated codes, and braided convolutional codes. We show that for each of the original classes of TCs, it is possible to find an equivalent ensemble by proper selection of the design parameters in the unified ensemble. We also derive the density evolution (DE) equations for this ensemble over the binary erasure channel. The thresholds obtained from the DE indicate that the TC ensembles from the unified ensemble have similar asymptotic behavior to the original TC ensembles

    Block-Diagonal and LT Codes for Distributed Computing With Straggling Servers

    Get PDF
    We propose two coded schemes for the distributed computing problem of multiplying a matrix by a set of vectors. The first scheme is based on partitioning the matrix into submatrices and applying maximum distance separable (MDS) codes to each submatrix. For this scheme, we prove that up to a given number of partitions the communication load and the computational delay (not including the encoding and decoding delay) are identical to those of the scheme recently proposed by Li et al., based on a single, long MDS code. However, due to the use of shorter MDS codes, our scheme yields a significantly lower overall computational delay when the delay incurred by encoding and decoding is also considered. We further propose a second coded scheme based on Luby Transform (LT) codes under inactivation decoding. Interestingly, LT codes may reduce the delay over the partitioned scheme at the expense of an increased communication load. We also consider distributed computing under a deadline and show numerically that the proposed schemes outperform other schemes in the literature, with the LT code-based scheme yielding the best performance for the scenarios considered.Comment: To appear in IEEE Transactions on Communication

    Threshold Saturation for Spatially Coupled Turbo-like Codes over the Binary Erasure Channel

    Get PDF
    In this paper we prove threshold saturation for spatially coupled turbo codes (SC-TCs) and braided convolutional codes (BCCs) over the binary erasure channel. We introduce a compact graph representation for the ensembles of SC-TC and BCC codes which simplifies their description and the analysis of the message passing decoding. We demonstrate that by few assumptions in the ensembles of these codes, it is possible to rewrite their vector recursions in a form which places these ensembles under the category of scalar admissible systems. This allows us to define potential functions and prove threshold saturation using the proof technique introduced by Yedla et al..Comment: 5 pages, 3figure
    • …
    corecore